Matrices and Determinants

Beginning with your first algebra course you have encountered problems such as the
following:

A boat traveling at a constant speed in a river with a constant current
speed can travel 48 miles downstream in 4 hours. The same trip
upstream takes 6 hours. What is the speed of the boat in still water
and what is the speed of the current?

Here is one way we can solve this problem: Let x be the speed of the boat in still
water and y be the speed of the current. Since the speed of the boat going downstream
is x + y, we have

4(x +y) =48 or x+y=12
Since the speed of the boat going upstream is x — y,
6(x —y) =48 or x —y=2_8.

Thus we can determine the speed of the boat in still water and the speed of the current
by solving the system of equations:

x+y=12
x—y=28.

Doing so (try it), we find the speed of the boat in still water is x = 10 miles per hour
and the speed of the current is y = 2 miles per hour.

The system of equations we have just considered is an example of a system of linear
equations, and you have encountered many such linear systems over the years. Of course,
you probably have come to realize that the larger the system—that is, the more variables
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and/or equations in the system—the more difficult it often is to solve the system. For
instance, suppose we needed to find the partial fraction decomposition of

1
which, as you saw in calculus, is used to integrate this expression. (In our study of the
Laplace transform in Chapter 7, we will see another place where finding partial fraction
decompositions of expressions such as this arises.) This partial fraction decomposition
has the form
1 __Ax+B " Cx+D
24+ 1D)(x24+4) 241 2447

and finding it involves solving a system of four linear equations in the four unknowns A4,
B, C, and D, which takes more time and effort to solve than the problem with the boat.
There is no limit to the size of linear systems that arise in practice. It is not unheard
of to encounter systems of linear equations with tens, hundreds, or even thousands of
unknowns and equations.

The larger the linear system, the easier it is to get lost in your work if you are not
careful. Because of this, we are going to begin this chapter by showing you a systematic
way of solving linear systems of equations so that, if you follow this approach, you will
always be led to the correct solutions of a given linear system. Our approach will involve
representing linear systems of equations by a type of expression called a matrix. After
you have seen this particular use of matrices (it will be just one of many more to come) in
Section 1.1, we will go on to study matrices in their own right in the rest of this chapter.
We begin with a discussion of some of the basics.

1.1 SYSTEMS OF LINEAR EQUATIONS

A linear equation in the variables or unknowns xi, x», ..., x,, is an equation that can
be written in the form

ax1+apxy+ -+ ax, =b

where ay, as, . .., a,, b are constants. For instance,
2x —3y =1
is a linear equation in the variables x and y,
3x—y+2z=38
is a linear equation in the variables x, y, and z, and
—Xx| +5xp —wx3 + \/Ex4 — Qx5 = &2

is a linear equation in the variables x|, x», x3, x4, and x5. The graph of a linear equation
in two variables such as 2x — 3y = 1 is a line in the xy-plane, and the graph of a linear
equation in three variables such as 3x — y 4+ 2z = 8 is a plane in 3-space.
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When considered together, a collection of linear equations

aixi +apxs + - 4 apx, = by

axxi + anxs + -+ apx, = by

Am1X1 + QuaXo + -+ - + Aun Xy = bm

is called a system of linear equations. For instance,

£ —y+zg=0
2x —3y+4+4z7=-2
=2x =y4g="17
is a system of three linear equations in three variables.
A solution to a system of equations with variables x;, xa, . .., X, consists of values
of x1, x2, ..., x, that satisfy each equation in the system. From your first algebra course

you should recall that the solutions to a system of two linear equations in x and y,

ajx +apy = by
a1 x + any = by,

are the points at which the graphs of the lines given by these two equations intersect.
Consequently, such a system will have exactly one solution if the graphs intersect in
a single point, will have infinitely many solutions if the graphs are the same line, and
will have no solution if the graphs are parallel. As we shall see, this in fact holds for
all systems of linear equations; that is, a linear system either has exactly one solution,
infinitely many solutions, or no solutions.

The main purpose of this section is to present the Gauss-Jordan elimination
method,! a systematic way for solving systems of linear equations that will always
lead us to solutions of the system. The Gauss-Jordan method involves the repeated use
of three basic transformations on a system. We shall call the following transformations
elementary operations.

1. Interchange two equations in the system.
2. Multiply an equation by a nonzero number.
3. Replace an equation by itself plus a multiple of another equation.

Two systems of equations are said to be equivalent if they have the same solutions.
It is not difficult to see that applying an elementary operation to a system produces an
equivalent system.

1 Named in honor of Karl Friedrich Gauss (1777-1855), who is one of the greatest mathematicians of all time
and is often referred to as the “prince of mathematics,” and Wilhelm Jordan (1842-1899), a German engineer.
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To illustrate the Gauss-Jordan elimination method, consider the system:
X—y+z=0
2x —3y+4+4z=-2
—Rx—y+z=T7.
We are going to use elementary operations to transform this system to one of the form
% =
y = &
£ =%
where each x* is a constant from which we have the solution. To this end, let us first
replace the second equation by itself plus —2 times the first equation (or subtracting 2
times the first equation from the second) and replace the third equation by itself plus

2 times the first equation to eliminate x from the second and third equations. (We are
doing two elementary operations simultaneously here.) This gives us the system

¥=y+z=0
—y+2z=-2
—By+37="7.

Next, let us use the second equation to eliminate y in the first and third equations by
replacing the first equation by itself minus the second equation and replacing the third
equation by itself plus —3 times the second equation, obtaining

% —z=2
— Y4 g = —2
—3ig =113,

Now we are going to use the third equation to eliminate z from the first two equations
by multiplying the first equation by 3 and then subtracting the third equation from it (we
actually are doing two elementary operations here) and multiplying the second equation
by 3 and then adding 2 times the third equation to it (here too we are doing two elementary
operations). This gives us the system:

3% = =]

—3y =20
3z =-13.

Finally, dividing the first equation by 3 (or multiplying it by 1/3), dividing the second
equation by —3, and dividing the third equation by 3, we have our system in the promised
form as

y = ——

which tells us the solution.
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You might notice that we only really need to keep track of the coefficients as we
transform our system. To keep track of them, we will indicate a system such as

x—y+2z=0
2x — 3y 44z=-2
—2x—3+g="
by the following array of numbers:
1 -1 1, O
2 -3 41 2
-2 -1 1. 7

This array is called the augmented matrix for the system. The entries appearing to the
left of the dashed vertical line are the coefficients of the variables as they appear in the
system. This part of the augmented matrix is called the coefficient matrix of the system.
The numbers to the right of the dashed vertical line are the constants on the right-hand
side of the system as they appear in the system. In general, the augmented matrix for
the system

ayxy) +anxy + - 4 apx, = by

as1 X1 + apxy + -+ -+ aonxy = by

A1 X1 + A2 X2 T+ A X = bm

is

air  anp ai, , b
1
a1 axn am ! by
1
! i
1
Aml Qw2 ... Qup bm

The portion of the augmented matrix to the left of the dashed line with entries a;; is the
coefficient matrix of the system.

Corresponding to the elementary operations for systems of equations are elementary
row operations that we perform on the augmented matrix for a linear system. These are
as follows.

1. Interchange two rows.>

2. Multiply a row by a nonzero number.
3. Replace a row by itself plus a multiple of another row.

2 A line of numbers going across the matrix from left to right is called a row; a line of numbers going down
the matrix is called a column.
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As our first formal example of this section, we are going to redo the work we did in
solving the system

X—3y+z=10
2x =3y +4z=-2
—2% —y L E="T

with augmented matrices.
EXAMPLE 1  Solve the system:

x—y+z2=0
2x —3y+4z=-2
—2x—y+z=1.

Solution  Our work will consist of four steps. In the first step, we shall use the first row and row
operations to make all other entries in the first column zero. In the second step, we shall
use the second row to make all other entries in the second column zero. In the third step,
we shall use the third row to make all other entries in the third column zero. In the fourth
step, we shall make the nonzero entries in the coefficient matrix 1 at which point we will
be able to read off our solution. To aid you in following the steps, an expression such as
Ry — 2R, next to the second row indicates that we are replacing the second row by itself
plus —2 times the first row; an expression such as R;/3 next to the first row indicates
we are dividing this row by 3. Arrows are used to indicate the progression of our steps.

1 -1 1 "' o0
2 3 4 1 -3 | Ry—2R
-2 =1 1. 7| R3+2R
I =1 1! 07 R-R
+|0 -1 21 =2
0 -3 3. 7| Ri—3R,
I O -1 ! 27 4B —Rs 30 0! -7 R1/3
>0 =1 21 -2 | 3R+2R — | 0 =3 0! 20 | —Ry3
0 0 -3 . 13 0 0 =3 1 13 | —Ry/3
1 0 0! —7/3
|0 101 —20/3
0 0 I . —13/3

The solution is then x = —7/3, y = —20/3,z = —13/3. ®
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In Gauss-Jordan elimination, we use elementary row operations on the augmented
matrix of the system to transform it so that the final coefficient matrix has a form called
reduced row-echelon form with the following properties.

1. Any rows of zeros (called zero rows) appear at the bottom.
2. The first nonzero entry of a nonzero row is 1 (called a leading 1).

3. The leading 1 of a nonzero row appears to the right of the leading 1 of any
preceding row.

4. All the other entries of a column containing a leading 1 are zero.
Looking back at Example 1, you will see that the coefficient matrix in our final
augmented matrix is in reduced row-echelon form. Once we have the coefficient matrix

in reduced row-echelon form, the solutions to the system are easily determined.
Let us do some more examples.

EXAMPLE 2 Solve the system:

X1 +x—x3+2x3 =1
X1+ x2+x4 =2

X1+ 2x, —4x3 =1

2x1 +x2 4+ 2x3 + 5x4 = 1.

Solution ~ We try to proceed as we did in Example 1. Notice, however, that we will have to modify
our approach here. The symbol R, <> Rs after the first step is used to indicate that we
are interchanging the second and third rows.

1 1 —~1 2 § 1
11 0 1!'2 B — Ry
12 401 Rs— Ry
2 1 2 511 | Ri—2R;
1 1 g ! 1
0 0 1 -1 ' 1| R+Rs
= |
0 -3 =2 : 0
0 -1 4 1 . —1
1 1 -1 2, 1| R—-R
6 1 -3 21 0
—7 |
0 0 1 -1 1
0 -1 4 1 . =1 Ri+ Ry
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1 0 2 4 17 R —2Rs 1 00 6 ' —1
01 -3 =2 ' 0| R +3R; 010 -5 ' 3
—> | —> |
001—1:1 001—1:1
B 8 1 ~F i i Ry — Ry 000 0.2

We now have the coefficient matrix in reduced row-echelon form. Our final augmented
matrix represents the system

x] +6x4 = —1

X)—5x4=3

X3 —x4=1
0=-2,

which is equivalent to our original system. Since this last system contains the false
equation 0 = —2, it has no solutions. Hence our original system has no solutions. @

EXAMPLE 3  Solve the system:

2x4+3y—z=3
—x—3+3z=10
x+2y+27=3

y+5z =3

Solution ~ We first reduce the augmented matrix for this system so that its coefficient matrix is in
reduced row-echelon form.

2 3 -1 '3
-1 =1 3 ' 0 | 2R +R,
1 2 3 3 | 2Ry— Ry
0 1 5.3
2 3 —1 | 3 Ry —3R;
01 513
— |
0 1 5 : 3 R3—R2
0 1 i 3 Ri— R,
2 0 —-16 | =6 ] Ry/2 1 0 -8 | =3
0 1 L3 01 5
=% 1 — |
0 ; 0 0 0 0 :
0 0 00 0
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This final augmented matrix represents the equivalent system:

x—8z=-3

y+5z=3
0=0
0=0.

Solving the first two equations for x and y in terms of z, we can say that our solutions
have the form

x=—34 8%, y=3—>5z

where z is any real number. In particular, we have infinitely many solutions in this

example. (Any choice of z gives us a solution. If z = 0, we have x = -3, y=3,2=0
as a solution; if z = 1, we have x = 5, y = —2, z = 1| as a solution; if z = +/17, we

have x = —3 + 84/17, y=3-— Sm, 7z = /17 as a solution; and so on.) In a case
such as this, we refer to z as the free variable and x and y as the dependent variables
in our solutions. When specifying our solutions to systems like this, we will follow the
convention of using variables that correspond to leading ones as dependent variables and
those that do not as free variables. It is not necessary to specify our solutions this way,
however. For instance, in this example we could solve for z in terms of x, obtaining

3

+_

L= 3

co| =

and

+ = 8+§,

X 3 5 9
=3 -5 =3-5{= =
. ‘ (8 8)

giving us the solutions with x as the free variable and y and z as the dependent variables. ®

Solve the system:

4x1 —8xp —x3 + x4 +3x5 =0
5x; — 10x, — x3 +2x4 +3x5 =0
3x; — 6xy —x3 + x4 + 2x5 = 0.

We again begin by reducing the augmented matrix to the point where its coefficient
matrix is in reduced row-echelon form:

4 -8 -1 13
5 =10 =1 2 3
3 -6 -1 1 2
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4 -8 -1 1 3 Ri+ R,
>0 0 13 -3
0 0 -1 1 =1, R3+ R,
4 -8 04 0,0 R1/4
10 013 =310
0 0 0 4 —4 1 0 | Ry/4
-2 0 1 0,0 R — R,
—+ 01 3 -3 | R, —3Rs
001 —1 .0
1 =2 0 0 1
~»]0 010 01
0 00 1 -1,
We now have arrived at the equivalent system
X1 —2x+x5=0
x3=0
X4 —x5 =0,
which has solutions
X1 = 2x — x5, x3 =10, X4 = X5
with x; and x5 as the free variables and x; and x4 as the dependent variables. ®

Systems of equations that have solutions such as those in Examples 1, 3, and 4 are
called consistent systems; those that do not have solutions as occurred in Example 2 are
called inconsistent systems. Notice that an inconsistent system is easily recognized once
the coefficient matrix of its augmented matrix is put in reduced row-echelon form: There
will be a row with zeros in the coefficient matrix with nonzero entry in the right-hand
entry of this row. If we do not have this, the system is consistent. Consistent systems
break down into two types. Once the coefficient matrix of the augmented matrix is put
in reduced row-echelon form, the number of nonzero rows in the coefficient matrix is
always less than or equal to the number of columns of the coefficient matrix. (That is,
there will never be more nonzero rows than columns when the coefficient matrix is in
reduced row-echelon form. Why is this the case?) If there are fewer nonzero rows than
columns, as we had in Examples 3 and 4, the system will have infinitely many solutions.
If we have as many nonzero rows as columns, as occurred in Example 1, we have exactly
one solution. Recall that it was mentioned at the beginning of this section that every
system of linear equations either has exactly one solution, infinitely many solutions, or
no solutions. Now we can see why this is true.
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A system of linear equations that can be written in the form

aynxy +apxy + -+ apx, =0

az1x1 +amxs + -+ agpx, =0

(€3]

am1X1 + amaXo + -+ + Xy =0

is called a homogeneous system. The system of equations in Example 4 ishomogeneous.
Notice that

xi =10, w5, =0, K =0

is a solution to the homogeneous system in Equations (1). This is called the trivial
solution of the homogeneous system. Because homogeneous systems always have a
trivial solution, they are never inconsistent systems. Homogeneous systems will occur
frequently in our future work and we will often be interested in whether such a system
has solutions other than the trivial one, which we naturally call nontrivial solutions.
The system in Example 4 has nontrivial solutions. For instance, we would obtain one
(among the infinitely many such nontrivial solutions) by letting x, = 1 and x5 = 2, in
which case we have the nontrivial solution x; = 0, x, = 1, x3 = 0, x4 = 2, x5 = 2.
Actually, we can tell ahead of time that the system in Example 4 has nontrivial solutions.
Because this system has fewer equations than variables, the reduced row-echelon form of
the coefficient matrix will have fewer nonzero rows than columns and hence must have
infinitely many solutions (only one of which is the trivial solution) and consequently must
have infinitely many nontrivial solutions. This reasoning applies to any homogeneous
system with fewer equations than variables, and hence we have the following theorem.

A homogeneous system of m linear equations in n variables with m < n has infinitely
many nontrivial solutions.

Of course, if a homogeneous system has at least as many equations as variables such
as the systems

2%+ 3 +z=0
x+y+z=0
x—2y—z=0
x—y—z=0 and
3x—y=0
2x+y+z=0

4x —3y—z=0

we would have to do some work toward solving these systems before we would be able
to see whether they have nontrivial solutions. We shall do this for the second system a
bit later.

Gaussian elimination, which is another systematic approach for solving linear
systems, is similar to the approach we have been using but does not require that all the
other entries of the column containing a leading 1 be zero. That is, it uses row operations
to transform the augmented matrix so that the coefficient matrix has the following form:

1. Any zero rows appear at the bottom.
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2. The first nonzero entry of a nonzero row is 1.

3. The leading 1 of a nonzero row appears to the right of the leading 1 of any
preceding row.

Such a form is called a row-echelon form for the coefficient matrix. In essence, we do
not eliminate (make zero) entries above the leading 1s in Gaussian elimination. Here is
how this approach can be applied to the system in Example 1.

1 -1 1! 0
3 <3 48 =2 | m-2R
-2 -1 ' 7 | Ry+2R
1 ~1 1! @m
N 1 2 -3
-3 3. 7| R-3R
1 -1 11! B I =] 1§ 0
>0 -1 21 2| R |0 1 -2 3
0 0 -3 . 13 | —R3y/3 0 0 1 . —13/3

We now have the coefficient matrix in a row-echelon form and use this result to find the
solutions. The third row tells us

13
z= 5
The values of the remaining variables are found by a process called back substitution.

From the second row, we have the equation

y=2g=2
from which we can find y:
26
e
y+ 3
20
y=-3-
Finally, the first row represents the equation
x—3y-tg=0

from which we can find x:

20 13
3 3

7

X ===

3
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On the plus side, Gaussian elimination requires fewer row operations. But on the minus
side, the work is sometimes messy when doing the back substitutions. Often, we find
ourselves having to deal with fractions even if our original system involves only integers.
The back substitutions are also cumbersome to do when dealing with systems that have
infinitely many solutions. Try the Gaussian elimination procedure in Example 3 or 4 if
you would like to see how it goes.

As a rule we will tend to use Gauss-Jordan elimination when we have to find the
solutions to a linear system in this text. Sometimes, however, we will not have to
completely solve a system and will use Gaussian elimination since it will involve less
work. The next example illustrates an instance of this. In fact, in this example we will
not even have to bother completing Gaussian elimination by making the leading entries
one.

Determine the values of a, b, and ¢ so that the system

xX—y+2z=a
2x+y—z=5>b
x+2y—-3z=c

has solutions.

We begin doing row operations as follows.

1 -1 2, a 1 —1 2 a
2 1 -1 1 b | RR=2R |0 3 =51 b-2
1 2 =3 1 c¢] R—R 0 3 =51 c¢c-a | Rs—R
{ ~i 2 | a
|0 3 =51 b-2a
0 0 0. a-b+c

Now we can see that this system has solutions if and only if a, b, and ¢ satisfy the
equation

a—b+c=0. ®

Another place where we will sometimes use an abbreviated version of Gaussian
elimination is when we are trying to see if a homogeneous system has nontrivial solutions.

Determine if the system

2x+y+2=0
x—2y—2z=0

3x —y=0
4x —3y—2z=0

has nontrivial solutions.
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Solution

Perform row operations:

2 1 1,0 2 1 110
1 =2 —-1 ! 0 2R, — R; 0 =5 —3 10
—* |
3 -1 010 | 2Rs—3R, 0 =5 =3 10 | Ry—R
4 -3 -1 .0 Ry — 2R, 0 =5 -3 1 0| Re—R,
2 1 1 10
0 =5 =3 10
— |
0 o 0 0
0 0 0.0
It is now apparent that this system has nontrivial solutions. In fact, you should be able
to see this after the first set of row operations. @

It is not difficult to write computer programs for solving systems of linear equations
using the Gauss-Jordan or Gaussian elimination methods. Thus it is not surprising that
there are computer software packages for solving systems of linear systems.> Maple is
one among several available mathematical software packages that can be used to find
the solutions of linear systems of equations.

In the preface we mentioned that we will use Maple as our accompanying software
package within this text. The use of Maple is at the discretion of your instructor. Some
may use it, others may prefer to use a different software package, and yet others may
choose to not use any such package (and give an excellent and complete course). For
those intructors who wish to use Maple—or for students who are independently interested
in gaining some knowledge of its capabilities—we will include occasional remarks about
how to use it when we deem it appropriate. On many other occasions we will not include
any remarks and will simply provide some exercises asking you to use indicated Maple
commands. In these cases, you are expected to look up the command in the Help menu
under Topic Search to see how to use it. This is one place where we will include a few
remarks to get you started. For those who wish to use the software packages Mathematica
or MATLAB, the accompanying Technology Resource Manual contains corresponding
commands for these software packages.

Here we explain how to use Maple to find solutions to linear systems. One way to
do this is to use the linsolve command. To use this command in a Maple worksheet, you
will first have to load Maple’s linear algebra package by typing

with(linalg) ;

at the command prompt > and then hitting the enter key. After doing this, you will get
a list of Maple’s linear algebra commands. To solve the system in Example 1, first enter
the coefficient matrix of the system by typing

Bi= matedoe( [ [L.51,11,02,-3,41,[-2,-1,410);

3 Often these packages employ methods that are more efficient than Gauss-Jordan or Gaussian elimination,
but we will not concern ourselves with these issues in this text.
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at the command prompt and then hitting the enter key. (The symbol :=is used in Maple
for indicating that we are defining A to be the coefficient matrix we type on the right.)
The constants on the right-hand side of the system are typed and entered as

b:=vector([0,-2,7]);

at the command prompt. Finally, type and enter

linsolve (A, Db) ;
at the commmand prompt and Maple will give us the solution as

-7 —20 -137*

[?“_?”77}'

Doing the same set of steps for the system in Example 2 results in no output, indicating
there is no solution. Doing them in Example 3 yields the output

[-3+8 1,3—5 1, tl,

which is Maple’s way of indicating our solutions in Example 3 with #; in place of z. In
Example 4, these steps yield

[2_t—_t,_11,0,_t, 1]

1. x+y—2z=0
2x +3y—2z=6
x+2y+2z=10

3. 2x+4+3y—4z=3
2x +3y—2z=3
4x +6y —2z =1

5. x+3z2=0
2x4+y—z=0

Solve the systems of equations in Exercises 1-16. 7. 3x14+x—3x3—x4=206
2. 2x+y—2z=0 X1 +x—2x34+x4 =0
2x —y—2z=0 3x; +2x) —4x3+x5=5
x+2y—4z=0 X1 +2x —3x34+3x4 =4
8. xi+x—x3+2x4=1
4, 3x+y—2z=3 X1+ X —x3—x4 =—1
x—8y—14z=—-14 X1+ 2% + x3 +2x4 = —1
x+2y+z=2 2x1 4+ 2x0+x3+x4 =2
9. x;14+2x —3x3+4x4 =2
6. 2x+3y+z=4 2x1 — 4xy + 6x3 — Sx4 = 10
x+9y—4z=2 X1 — 6x7 +9x3 — 9xy =
x—y+2z=3 3x1 —2x) +4x3 — x4 = 12

4x+y+57=0

4 Software packages such as Maple often will have several ways of doing things. This is the case for solving
systems of linear equations. One variant is to enter b as a matrix with one column by typing and entering
b:=matrix([[0], [-2], [71]);
When we then type and enter
linsolve (A,Db);
our solution is given in column form. Another way is to use Maple’s solve command for solving equations
and systems of equations. (With this approach it is not necessary to load Maple’s linear algebra package.) To
do it this way for the system in Example 1, we type and enter
solve ({x-y+z=0,2%x-3*y+4*z=-2, -2*x-y+z=7},{x,y,2}) ;
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10. X1 —X2+Xx3+x4—x5=0
2x] — X2 +2x3 — x4 +3x5 =0
2X1 — Xy —2x4 +x5 =0
X1+x—x3—x4+2x5=0
2x) +4x3+ x4 +3x5 =0
2x —4y+6z=2
—3x4+6y—9z=3

11. X+2y+z=-2 12.
2x +2y —2z=3

13. x—2y=2 14. 2x+3y=5
x+8y=-4 2x+y=2
2 +y=1 x—2y=1

15. 2x1 — X2 —x3+ x4 +x5=0
X — X2+ x3+2x4 —3x5=0
3x;1 —2xp —x3 — x4 +2x5 =0

16. X1 —=3x4+x3 —x4 —x5 =1

2x1 +x2 —x34+2x4 +x5 =2
—Xx14+3x —x3 —2x4 — x5 =3

2X1+X2—}C3—X4—X5:6

Determine conditions on a, b, and ¢ so that the systems
of equations in Exercises 17 and 18 have solutions.

17. 2x —y+3z=a 18. x+42y—z=a
x—3y+2z=5b x+y—2z=0b
x+2y+z=c¢ 2x+y—3z=c¢

Determine conditions on a, b, ¢, and d so that the sys-
tems of equations in Exercises 19 and 20 have solutions.

19. xi+x+x3—x4=a
X]—X2—X3+x4=0b
X{ X+ X5 F x4 =¢
X —X2+x3+x4=d
20. X1 —Xo+x3+xs=a
Xptxg—=2x%5+3x=b
3x; —2xp +3x3 —2x4 = ¢
2x9 —3x3+2x4=d

Determine if the homogeneous systems of linear equa-
tions in Exercises 21-24 have nontrivial solutions. You
do not have to solve the systems.

21. 9% —2y+17z=0
13x 4+ 81y — 27z =0

22, 99x; +7mx —+/5x3 =0
2x; 4+ (sin 1)x; +2x4 =0
3.38x; —exs+ (In2)xy =0
23. x—y+z=0
2x+y+2z=0
3x=5y+3z=0
24. x+y+2z=0
3x—y—2z=0
2x =2y —4z=0
x+3y+6z=0

25. We have seen that homogeneous linear systems with
fewer equations than variables always have infinitely
many solutions. What possibilities can arise for non-
homogeneous linear systems with fewer equations
than variables? Explain your answer.

26. Give an example of a system of linear equations with
more equations than variables that illustrates each of
the following possibilities: Has exactly one solution,
has infinitely many solutions, and has no solution.

27. Describe graphically the possible solutions to a sys-
tem of two linear equations in x, y, and z.

28. Describe graphically the possible solutions to a sys-
tem of three linear equations in x, y, and z.

Use Maple or another appropriate software package to
solve the systems of equations in Exercises 29-32. If
you are using Mathematica or MATLAB, see the Tech-
nology Resource Manual for appropriate commands.
(To become more comfortable with the software pack-
age you are using, you may wish to practice using it
to solve some of the smaller systems in Exercises 1-16
before doing these.)

29. Tx; —3x3 4+ 5x3 — 8x4 +2x5 = 13
12x; +4x, — 16x3 — x4 + Tx5 = 21
—22x; — 8xp + 25x3 — 16x4 — 8x5 = 47
—52x; —40xy 4+ 118x3 — 37x4 — 29x5 = 62
30. 46x) + 82xy — 26x3 + 44xy = 122
69x; + 101xy + 43x3 + 30x4 = 261
—437x; — 735x7 + 335x3 + 437x4 = —406
299x; + 379x; — 631x3 — 2501x4 = —4146
1863x; 4 2804x; + 62x3 — 1983xy = 4857
1748x1 4+ 2291x, — 461x3 — 9863x4 = 4166



31. 62x; + 82xp + 26x3 — 4xy
+ 32x5 + 34x¢ — 2x7 —4xg =0

93x1 + 123x, + 67x3 — 36x4
+ 106x5 4+ 51x¢ + 31x7 — 188x5 =0

—589x; — 779x, — 303x3 + 647x4
— 330x5 — 323x¢ — 256x7 — 246x3 =0
403x; + 533x; 4+ 365x3 — 2493x4
+ 263x5 + 50x¢ + 981x7 + 1345x3 =0
2511x1 4+ 3321x, + 1711x3 — 2636x4
+ 2358x5 + 1357x6 + 1457x7 — 2323x3 =0
2356x; + 3116x; + 2038x3 — 6828x4
+ 2418x5 + 1936x6 4+ 3596x7 — 357x3 =0
32.33x; +33x +12.1x3 + 2.2x4
+45.1x5 + 7.7x¢ + 12.1x7
4+ 35.2xg + 1.1xg = =3.3
3x; + 3xp + 15.8x3 — 4xy
+ 61.4xs5 + 82x6 + 5x7
+ 21.2xg3 + 5.8x9 = —0.6

(continued)
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—3.3x1 —3.3x, — 16.1x3 + 1.8x4
— 61.1x5 — 9.7x¢ — 10.1x7
— 28.2xg —4.2x9 =17.3
3x1 4+ 3x, + 15x3
+ 56.3x5 + 8.4x6 + 13.7x7
+ 30.3xg + 9.8x9 = —9.9
3x; 4+ 3x; + 11x3 + 3x4
4+ 37x5 4+ 19.5x6 + 14x7
+ 30.5xg — 7.5x9g = —17
—3x; —3xp — 11x3 — 3x4
—41.1x5 — 3.8x6 — 5.9x7
— 34.1xg + 16.4x9 = 38.3
—2.2x4 +5.2x5 — 4.2x4
— 11.6x7 — 1.4xg +31.2x9 = 48.2
4.2x) +4.2xy 4+ 19.4x3 — 3.2x4
+ 76.4x5 — 0.2x¢ + 3.4x7
+ 35.8xg — 9.6x9 = —23.2

1.2 MATRICES AND MATRIX OPERATIONS

In the previous section we introduced augmented matrices for systems of linear equations
as a convenient way of representing these systems. This is one of many uses of matrices.
In this section we will look at matrices from a general point of view.

We should be explicit about exactly what a matrix is, so let us begin with a definition.
A matrix is a rectangular array of objects called the entries of the matrix. (For us, the
objects will be numbers, but they do not have to be. For example, we could have matrices
whose entries are automobiles or members of a marching band.) We write matrices down
by enclosing their entries within brackets (some use parentheses instead) and, if we wish
to give a matrix a name, we will do so by using capital letters such as A, B, or C. Here

are some examples of matrices:

[123
A=

4 5 6

] B=[-7 4 4 0 3],

0 -2 T 8
-1 12 3/8 In2

D =
1 1 1 -1

V2 -7 09 —391/629



18

Chapter 1

Matrices and Determinants

Augmented matrices of systems of linear equations have these forms if we delete the
dashed line. In fact, the dashed line is included merely as a convenience to help distin-
guish the left- and right-hand sides of the equations. If a matrix has m rows (which go
across) and n columns (which go up and down), we say the size (or dimensions) of the
matrix is (or are) m x n (read “m by n”). Thus, for the matrices just given, A isa2 x 3
matrix, B isa 1 x 5 matrix, C is a4 x 1 matrix, and D is a 4 x 4 matrix. A matrix such
as B that has one row is called a row matrix or row vector; a matrix such as C that has
one column is called a column matrix or column vector. Matrices that have the same
number of rows as columns (that is, n x n matrices) are called square matrices. The
matrix D is an example of a square matrix.

As you would expect, we consider two matrices A and B to be equal, written A = B,
if they have the same size and entries. For example,

)l ]
[ 22 ] [0

The general form of an m x n matrix A is

while

ayp  dip ap e Ay
dz)  dypp  dpy3 - dyy

A=| a3 ap ax - az |- ®
am1 w2 Ap3 o App _J

Notice that in this notation the first subscript i of an entry a;; is the row in which the
entry appears and the second subscript j is the column in which it appears. To save
writing, we shall often indicate a matrix such as this by simply writing

A = [Cl,‘j].

If we wish to single out the i j-entry of a matrix A, we will write

ent;; (A).
For instance, if B is the matrix
—1 2 1
B= S 4 =9 |,
3 -4 7

then

enty3(B) = —9.
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If A = [a;;]is an n x n matrix, the entries a1, az, ..., dy, are called the diagonal
entries of A. The matrix B has diagonal entries —1, 4, 7.

We will use the symbol R to denote the set of real numbers. The set of m X n
matrices with entries from R will be denoted

Minsn(R).
Thus, for example, in set notation
ap; ap
5
Mro(R) = | aii, a2, a1, a2 € R
az;  ax

You have encountered two-dimensional vectors in two-dimensional space (which
we will denote by R?) and three-dimensional vectors in three-dimensional space (which
we will denote by IR?) in previous courses. One standard notation for indicating such
vectors is to use ordered pairs (a, b) for two-dimensional vectors and ordered triples
(a, b, c) for three-dimensional vectors. Notice that these ordered pairs and triples are in
fact row matrices or row vectors. However, we will be notationally better off if we use
column matrices for two- and three-dimensional vectors. We also will identify the set
of two-dimensional vectors with R? and the set of three-dimensional vectors with R3; in
other words,

) a
R* = M (R) = 5 la,beR
and
 a
R} = M3 (R) = b |la,b,ceR
C

in this book. More generally, the set of n x 1 column matrices M, (R) will be denoted
R" and we will refer to the elements of R” as vectors in R" or n-dimensional vectors.

We next turn our attention to the “arithmetic" of matrices beginning with the op-
erations of addition and a multiplication by numbers called scalar multiplication.6 If
A and B are matrices of the same size, we add A and B by adding their corresponding

5 In set notation, the vertical bar, |, denotes “such that” (some use a colon, :, instead of a vertical bar) and the
symbol € denotes “element of” (or “member of”’). One way of reading

air  an

| aiy,az, az1,a22 € R
ay ax

an  an

ay  ax

such that a1, aiz, a»1, ay; are elements of the set of real numbers.”

is as “the set of matrices

6 These two operations are extensions of the ones you already know for vectors in R? or R? to matrices in
general.
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entries; that is, if
A= [a,-j] and B = [b,,]

are matrices in M,,, (R), the sum of A and B is the m x n matrix

A+ B = [a,-j +blj]

For instance, if

1 2 &8 9
A=| 3 4 and B=| 10 11 |,
56 12 13
then
148 249 9 11
A+B=| 3+10 4411 | =] 13 15
5+12 6413 17 19

Note that we have only defined sums of matrices of the same size. The sum of matrices
of different sizes is undefined. For example, the sum

[ﬁi f]+[3 0 2]

is undefined. If ¢ is a real number (which we call a scalar in this setting) and A = [a; 1
is an m x n matrix, the scalar product cA is the m x n matrix obtained by multiplying
c times each entry of A:

cA = cla;j] = [cay;].

512 5.1 §5:3 5 10
34| |53 5.4 |15 2 |

The following theorem lists some elementary properties involving addition and
scalar multiplication of matrices.

For example,

If A, B, and C are matrices of the same size and if ¢ and d are scalars, then:

A 4+ B = B 4+ A (commutative law of addition).

A+ (B+ C) = (A+ B) + C (associative law of addition).
c(dA) = (cd)A.

c(A+ B) =cA+cB.

(c+d)A=cA+dA.

N e
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Proof We prove these equalities by showing that the matrices on each side have the same
entries. Let us prove parts (1) and (4) here. The proofs of the remaining parts will be
left as exercises (Exercise 24). For notational purposes, we set

A =[a;j] and B = [b;].
Part (1) follows since
ent;; (A + B) = a;; + b;jj = b;j + a;; = ent;;(B + A).
To obtain part (4),
ent;;j (c(A + B)) = c(a;j + b;j) = ca;j + cb;j = ent;j(cA + cB). ®

One special type of matrix is the set of zero matrices. The m x n zero matrix,
denoted O,,,, is the m x n matrix that has all of its entries zero. For example,

0 0 O

0 0 0 0
02x2:|:0 0:| and O3 = 00 0
0 0 O

Notice that if A is an m X n matrix, then:

L A4 Opsn= A
2. 0-A = Opxn.

We often will indicate a zero matrix by simply writing O. (To avoid confusion with the
number zero, we put this in boldface print in this book.) For instance, we might write
the first property as A + O = A. The second property could be writtenas 0 - A = O.

The negative of a matrix A = [a;;], denoted —A, is the matrix whose entries are
the negatives of those of A:

—A = [—aj].

Notice that
—A=(—1)A and A+ (—A)=0.

Subtraction of matrices A and B of the same size can be defined in terms of adding the
negative of B:

A—B=A+(-B).

Of course, notice that A — B could also be found by subtracting the entries of B from
the corresponding entries of A.

Up to this point, all of the operations we have introduced on matrices should seem
relatively natural. Our final operation will be matrix multiplication, which upon first
glance may not seem to be the natural way to multiply matrices. However, the manner of
multiplying matrices you are about to see is the one that we will need as we use matrix
multiplication in our future work.
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Here is how we do matrix multiplication: Suppose that A = [a;;]is an m X n matrix
and B = [b;;] is an n x [ matrix. The product of A and B is defined to be the m x [
matrix

AB = [pj;]

where

n
Pij = anbij +ainbyj +aisbsj + - - + aipby; = Zaikbkj-
k=1

In other words, foreach 1 < i < mand 1 < j < [ the ij-entry of AB is found by
multiplying each entry of row i of A times its corresponding entry of column j of B and
then summing these products.

Here is an example illustrating our matrix multiplication procedure.

Find the product AB for

The product AB is

1 2 5 6
AB =

¢ 4“7 8}

[ 15427 1-6+2-8 19 22
“_3-5+4-7 3.64+4-8 | | 43 50 | ®

Once you practice this sum of row entries times column entries a few times, you
should find yourself getting the hang of it.” Let us do another example of matrix multi-
plication.

Find the product C D for
— 1 2 -3 1 -2
C = 0 -1 1 and D=| -3 4
4 2 -1 1 1

7 You might find it convenient to note that the i j-entry of AB is much like the dot product of the vector formed
by row i of A with the vector formed by column j of B. We will discuss dot products more fully in Chapter 9.
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—~1 3 -3 1 &
cp=| 0 -1 1 5 4
4 2 -1 1
[ (=1)-142(=3)=3-1 (=I)(-2)+2-4-3-1 ~10 7
= 0-1—1¢-8j+1-1 B—9) —1 ki $1:1 | = 4 —3
R N A~ Tk —1: 1 3 -1

Notice that for the product A B of two matrices A and B to be defined, it is necessary
that the number of columns of A be the same as the number of rows of B. If this is not
the case, the product is not defined. For instance, the product DC for the matrices in
Example 2 is not defined. In particular, C D is not the same as DC. This is an illustration
of the fact that matrix multiplication is not commutative; thatis, A B is not in general the
same as BA for matrices A and B. Sometimes these products are not the same because
one is defined while the other is not, as the matrices C and D illustrate. But even if both
products are defined, it is often the case that they are not the same. If you compute the
product B A for the matrices in Example 1, you will find (try it)

23 34
BA = .
31 46
which is not the same as AB.3 In the case when AB = BA for two matrices A and B,
we say A and B commute.
While matrix multiplication is not commutative, some properties that you are used

to having for multiplication of numbers do carry over to matrices when the products are
defined.

Provided that the indicated sums and products are defined, the following properties hold
where A, B, and C are matrices and d is a scalar.

1. A(BC) = (AB)C (associative law of multiplication)

2. A(B+ C)= AB + AC (left-hand distributive law)

3. (A+ B)C = AC + BC (right-hand distributive law)

4. d(AB) = (dA)B = A(dB)

We will prove the first two parts here and leave proofs of the remaining parts as exercises
(Exercise 25). For notational purposes, suppose

A= [a,-j], B = [b,‘j], and C = [C,‘j].

8 This is not the first time you have encountered an example of a noncommutative operation. Composition
P!

of functions is noncommutative. The cross product of two three-dimensional vectors is another example of a

noncommutative operation.
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To prove part (1), we also have to introduce some notation for the sizes of A, B, and C.
Suppose A is an m x n matrix, B is an n x [ matrix, and C is an [/ x & matrix. Both
A(BC) and (AB)C are m x h matrices. (Why?) To see that these products are the same,
we work out the i j-entry of each. For A(BC), this is

n [

n n l
ent;; (A(BC)) = Za,-kentkj(BC) = Zaik Zbchqj = Z Za;kbchqj
=i g=1

k=1 k=1 \ g=1

Carrying out the same steps for (AB)C,

! 1 n ! n
ent;; ((AB)C)) = Y _entiy(AB)cg; = ) (Z a,-kbkq) G = (Z a,-kbchqj) :
k=1 g=1

g=1 g=1 k=1

Since the summations over k and ¢ are interchangeable, we see that the ij-entries of
A(BC) and (AB)C are the same and hence A(BC) = (AB)C.

To prove part (2), we again introduce notation for the sizes of our matrices. Suppose
A is an m x n matrix and B and C are n x [ matrices. Both A(B + C) and AB + AC
are m x [ matrices. We have

ent;;(A(B + C)) = Zaik(entkj(B +0) = Zaik(bkj + cxj)
k=1 k=1

n

= Z(aikbkj + aikcyj)

k=1

and
n n
ent;; (AB + AC) = ent;j(AB) + ent;; (AC) = Y aubyj + Y _ aixcy;
k=1 k=1
— Z(aikbkj + ajkCr;j)-
k=1
Thus A(B + C) = AB + AC since they have the same entries. ®

If A is a square matrix, we can define positive integer powers of A in the same
manner as we do for real numbers; that is,

Al=A, A’=AA, and A3=AZA=AAA,....
Such powers are not defined, however, if A is not a square matrix. (Why is this the case?)
If A is an m x n matrix, it is easy to see that
lemA = O[xn and Aonxl = Om><1~

Besides zero matrices, another special type of matrices is the set of identity matrices.
The n x n identity matrix, denoted 7,,, has diagonal entries 1 and all other entries 0. For
example,
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1 0
1

0
1—10 d Lh=| 0 0
= an =
: 0 1 S
0 0 1

Identity matrices play the role the number 1 plays for the real numbers with respect to
multiplication in the sense that

I[,A=A and Al,=A

for any m x n matrix A. (Convince yourself of these statements.)
One use (among many more to come) of matrix multiplication arises in connection
with systems of linear equations. Given a system of linear equations

apx) +apxy + -+ apx, = b

a1 X1 + anxy + -+ 4 apx, = by

am1 X1 + ApaXy + -+ + AmnXn = bma

we will let A denote the coefficient matrix of this system,

ar apn = din
ar| ann e (257
A — . £l
Am1 am2 ter Apn
X denote the column of variables,
X1 N
X2
X = ) .
x” =
and B denote the column,
by 7
by
B = .
bm J

Observe that our system can then be conveniently written as the matrix equation

AX = B.
For instance, the system
2x —y+4z=1
x—Tyt+g=3

—x+2y+z=2
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would be written

2 =1
L =T
—1 2

4 % 1
1 y |=] 3
1 Z 2

as a matrix equation. Notice that a homogeneous linear system takes on the form AX =

O when written as a matrix equation.

EXERCISES 1.2

In Exercises 1-18, either perform the indicated opera-
tions or state that the expression is undefined where A,
B, C, D, E, and F are the matrices:

Write the matrix equations as systems of equations in
Exercises 21 and 22.

X1
2 -2 5 7 X2 12
21, =
|4 5 —-11 3 ] X3 [ —3 :!
X4
(2 2 -1 % 51
2.1 0 -1 -5 y |=] 33
2 =3 0 Z 172
23. S_uppose that A and B are n x n matrices.

a) Show that (A + B)2 = A2+ AB + BA + B2,
b) Explain why (A + B)? is not equal to
A% +2AB + B? in general.

24. Prove the following parts of Theorem 1.2.

) 2 —1
A=|3 -1 |, B=| -3 =2 |,
9. =] 0 4
C:{z —1], D:[o 1]’
1 5 3 —1
-3 5 1 —1 4
E=|2 1 -1 |, F=|2 =36
1 1 0 1 0 1
1.LA+B 2. D—C 3.2B
—3F 5.A—4B 6. 3D 4-2C
CD 8. DC 9. EF
10. FE 11. AE 12. EA
13. (E+ F)A 14. B(C+ D) 15.3AC
16. F(—2B) 17. ¢ 18. A3

Write the systems of equations in Exercises 19 and 20
in the matrix form AX = B.

19. 2x—y+4z=1

x+y—z=4
y+3z=35
x+y=2

20. X1 —3)62 +.X3—-5X4:2
X1 +x2—x3+x4 =1

X|— X2 —x3+6x4=06

25.

26.

27.

28.

a) Part (2)

b) Part (3)

c) Part (5)

Prove the following parts of Theorem 1.3.

a) Part (3)

b) Part (4)

Suppose A is an m x n matrix and B is an n x [
matrix. Further, suppose that A has a row of zeros.
Does AB have a row of zeros? Why or why not?
Does this also hold if B has a row of zeros? Why or
why not?

Suppose A is an m x n matrix and B is an n x [
matrix. Further, suppose that B has a column of ze-
ros. Does A B have a column of zeros? Why or why
not? Does this also hold if A has a column of zeros?
Why or why not?

Give an example of two matrices A and B for which
AB =0 with A # O and B # O.



29. a) Suppose that A is the row vector
A:[ a a - a ]

and B is an n x [ matrix. View B as the column
of row vectors

B
B,
B = ]
BH
where By, B,, ..., B, are the rows of B. Show
that

AB =a1B) +aBy +---+a,B,.
b) Use the result of part (2) to find AB for

—1 1 0
A=[-2 1 6] and B=| 2 1 1
4 -1 2
30. a) Suppose that B is the column vector
b
by
B = .
by

and A is an m X n matrix. View A as the row of
column vectors

A=[ A A - A ]

where A, Ay, ..
Show that

AB =bA +byAy + -+ b,A,.
b) Use the result of part (a) to find AB for

., A, are the columns of A.

3 2 -1 2
A=| 0 3 5 and B=| —1
1 1 2 3

31. The trace of a square matrix A, denoted tr(A), is
the sum of the diagonal entries of A. Find tr(A) for

5 0 —4
A=| 2 =11 6
2 10 3

32. Prove the following where A and B are square ma-
trices of the same size and c is a scalar.
a) tr(A+ B) =tr(A) + tr(B)
b) tr(cA) = c tr(A)
c) tr(AB) =tr(BA)
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The matrix command introduced in the previous section
is one way of entering matrices on a Maple worksheet.
Maple uses the evalm command along with +, -, *, &*,
and A to find sums, differences, scalar products, matrix
products, and matrix powers, respectively. For instance,
to find A — B +4C + AB — C? where A, B, and C
are matrices already entered on a Maple worksheet, we
would type and enter

evalm (A-B+4*C+A&*B-CA3) ;

at the command prompt. A scalar product cA also may
be found with the scalarmul command by typing

scalarmul (A, c);

at the command prompt. Products of two or more ma-
trices can be found by using the multiply command. For
instance, typing and entering

multiply(B,A,C);

will give us the product BAC. Use these Maple com-
mands or appropriate commands in another suitable soft-
ware package (keep in mind that corresponding Math-
ematica and MATLAB commands can be found in the
Technology Resource Manual) to find the indicated ex-
pression (if possible) where

4 =2 16 27 -11
9 43 9 =8 -1
A= 34 20 -3 0 21 |,
-5 4 4 7 41
0 12 -2 -2 3

1 1.0 0 O
2 2 2 0 0
B=| 0 3 3 3 0 |, and
0 0 4 4 4
0 0 0 5 5
-2 1 0 3 0
0 1 2 1 -1
C =
3 -1 -1 1 1
— 0 2 2 =3
in Exercises 33—40.
33. A—2B 34. 5A 4+ 6C
35. ABC 36.CB+C
37. (A + B)? 38.4A 4+ CB

39.4CA—-5CB -2C 40. B> —4AB +2A%
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1.3 INVERSES OF MATRICES

THEOREM 1.4

If A is an n x n matrix, we say that an n x n matrix B is an inverse of A if

AB=BA=1

where [ is the n x n identity matrix. To illustrate, the matrix

=35

has the matrix

as an inverse since

2=l

1 2 1 0
351 o 1|
(How we obtain B will be seen later.)

Not all square matrices have inverses. Certainly, square zero matrices do not have
inverses. (The products O B and BO are O, not /.) But even a nonzero square matrix
may fail to have an inverse. As a simple example, the matrix

0]

cannot have an inverse since for any 2 x 2 matrix

B:[jj]
Jle]-lee]ele ]

Square matrices that have inverses are called invertible or nonsingular matrices; those

that do not have inverses are called noninvertible or singular matrices.
When a matrix has an inverse, it has only one inverse.

and

-5 2
BA =
3 —1

we have

1 0
AB =
0 0

If A is an invertible matrix, then the inverse of A is unique.
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Proof  Suppose that A did have two inverses B and C. Consider the product BAC. If we group
B and A together,

BAC =(BA)C=1IC=C
since BA = I. If we group A and C together,
BAC = B(AC)=BI =8B
since AC = I. Thus,
C=8B ®

The uniqueness of the inverse of an invertible matrix A allows us to speak of the
inverse of A rather than an inverse of A. It also allows us to introduce a symbol for the
inverse of A. Henceforth we shall denote the inverse of A by

A1

in much the same manner as we use the exponent — 1 for denoting inverses of functions.’

Let us now turn our attention to a method for finding inverses of square matrices.
Consider again the matrix
L 2
A= .
3 5

Let us think of the inverse of A as an unknown matrix
We want to find the entries so that

A 1 2 X X | x+2x1  xp+2xpn | |10
135 X1 Xm | | 3% +5xm B3xp45xm | | 0 1|

This gives us a system of equations in x;; and x;,

x11+ 2% =1
%11+ 5% = 0,
and a system in x, and x;7,
X12+2x =0
3X12 + 5X22 =1

9 Do note that A~! does not stand for 1/A any more than sin™! x stands for 1/ sin x; indeed writing 1/A for
a matrix A amounts to writing nonsense.



30

Chapter 1

EXAMPLE 1

Matrices and Determinants

We then will have a unique matrix A~! so that AA~! = I if and only if each of these
systems of equations has a unique solution (which occurs if and only if the reduced
row-echelon form of A is I'). Let us solve these systems to see if this is the case. To save
writing, notice that since both of these systems have the same coefficient matrices, any
set of row operations that leads to the solution of one system leads to the solution of the
other system too. Thus we can simultaneously solve these two systems by forming the

augmented matrix
1 2,10
[Al1] = J
3501

and then using row operations to reduce its left-hand portion A to reduced row-echelon
form (which will be I):

1 2 1 0 1 0, =5 2
— | - I .
0O -1 .+ =3 1 0 1 . 3 -1

(We have not indicated the row operations here. Can you determine the ones we used?)
The right-hand portion of our final augmented matrix tells us x;; = —5, xp; = 3,

X12 = 2, Xpo = —1, and hence
-5 2
A7l = .
3 -1

We must be honest, however. There is a gap in our development here. The procedure
we have justillustrated produces a matrix B so that AB = I. (We describe this by saying
B is aright-hand inverse.) But the inverse of A must also have the property that BA = I.
(When BA = I, we say B is a left-hand inverse.) You can check that the right-hand
inverse we have just found for the given 2 x 2 matrix A is also a left-hand inverse and
hence is A~!. Shortly we will fill in this left-hand inverse gap. Once we do so, we then
will have that the inverse of a square matrix A (if any) can be found by the following
procedure:

1. Form the augmented matrix [A|/] where I is the identity matrix with the same
size as A.

2. Use row operations to reduce the left-hand portion into reduced row-echelon
form.

3. If the augmented matrix after step 2 has the form [/|B], then B = A~ if it
does not have this form (or equivalently, if the reduced row-echelon form of A
contains a zero row), A does not have an inverse.

Examples 1 and 2 illustrate our procedure for finding inverses.

If possible, find the inverse of the following matrix.
2 1 3
2 1 1
4 5 1
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We first form the augmented matrix and then apply row operations:
213,100 2 1 3, 1 0 0
21 1:010[>[00 21110
451,001 g4 3 -5« 2 b 1
2 3, 100 14, 5 0 -1
s © 3 530 1| 5148 |1
0 2 i —1 1 0 2 | —£ 1 9
6 0 0, =2 7 -1 1 0 0, —1/3 7/6 —1/6
| 1
-1 0 6 0 ! 1 -5 2 |—->|[01 0" 1/6 —5/6 1/3
o 6 ~2 1 =i 1 0 0 1 . 1/2 —-1/2 0
Thus the inverse of this matrix is
—1/3 7/6 —1/6
1/6 —-5/6 1/3
1/2 —1/2 0 @
If possible, find the inverse of the following matrix.
1 =2 2
2 -3 1
-1 -1
We again form the augmented matrix and apply row operations:
1 -2 2 .1 00 1 =2 7 | 1 00
2 -3 1101 0|>]0 131210
1 -1 =1 :0 0 1 @ 1 -3 —1 0 1

At this point it is apparent that the left-hand portion cannot be reduced to 7 and hence

the matrix in this example does not have an inverse.

When the inverse of a square matrix A is known, we can easily find the solutions to

a system of linear equations
AX = B.
If we multiply this matrix equation by A~! on the left, we have

A'AX = A7'B
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and hence the solution is given by
X=A""B.

We use this approach to solve the system in the next example.

Solve the system

224+y+3z2=6
2x+y+z=-12
4x +5y+z=3.

From Example 1, we have that the inverse of the coefficient matrix
2 1 3

A= 2 1 1

4 5 1

of this system is

~1/3  1/6 —1/6
1/6 —5/6 1/3

1/2 —1/2 0
The solution is then given by
% —-1/3  7/6 —1/6 6 —33/2
X=|y |=A"1B= 1/6 —5/6 1/3 =12 | = 12 |;
1/2 —1/2 0 3 9
thatis, x = —33/2,y =12,z =9. ®

The following theorem gives us a characterization of when a system of n linear
equations in 7 unknowns has a unique solution.

A system AX = B of n linear equations in n unknowns has a unique solution if and only
if A is invertible.

If A is invertible, the solutions to the system are given by X = A~!B and hence are
unique. Conversely, suppose AX = B has a unique solution. Considering the result of
Gauss-Jordan elimination on the system, it follows that the reduced row-echelon form
of Ais I. Hence A is invertible. [ ]

We now develop some mathematics that will justify why B = A~! when we are
able to reduce [A|I] to [/|B].

Matrices obtained from an identity matrix / by applying an elementary row operation
to / are called elementary matrices. We classify elementary matrices into the following
three types.



1.3 Inverses of Matrices 33

Type 1: An elementary matrix obtained by interchanging two rows of 1

Type 2: An elementary matrix obtained by multiplying a row of / by a nonzero
number

Type 3: An elementary matrix obtained by replacing a row of I by itself plus a
multiple of another row of /

Some examples of elementary matrices of each of these respective types obtained from
the 2 x 2 identity matrix are

0 1
Ey = 1 @ (interchange rows 1 and 2),
P e 5
E; = 6 1 (multiply row 1 by 2),
(1 0] ,
E; = & i (add 3 times row 1 to row 2).

An interesting fact is that multiplication by elementary matrices on the left of another
matrix performs the corresponding row operation on the other matrix. Notice how this
works when we multiply E, E,, and E3 times a 2 X 2 matrix:

0 1 [a ] [c 4

1 0 c d | a b

(2 0l a b [ 2¢a 2b

i li_cd___c d

1 00[a ] [ a b
31 ||lcd __3a+c 3b+d |

These illustrate the following theorem whose proof we leave as an exercise
(Exercise 13).

THEOREM 1.6  Suppose that A is an m x n matrix and E is an m x m elementary matrix.

1. If E is obtained by interchanging rows i and j of I, then E A is the matrix
obtained from A by interchanging rows i and j of A.

2. If E is obtained by multiplying row i of I by c, then E A is the matrix obtained
from A by multiplying row i of A by c.

3. If E is obtained by replacing row i of I by itself plus ¢ times row j of I, then
E A is the matrix obtained from A by replacing row i of A by itself plus ¢
times row j of A.

Of course, we would not use multiplication by elementary matrices to perform row
operations—certainly we would just do the row operations! Nevertheless, they do serve
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as a useful theoretical tool from time to time. Our first instance of this involves seeing
why our procedure for finding inverses does in fact produce the inverse. Look at our
procedure in the following way. We begin with the augmented matrix [A|7] and use
elementary row operations to reduce it to [/|B]. Suppose this takes k elementary row
operations and Ej, E, ..., E; are the elementary matrices that perform the successive
row operations. Since performing these elementary operations on [A|/] is the same as
performing them on A and 7 individually, it follows that

Ey - EyEN[A|l] = [Ey - - E2E1A|Ey -+ - Ex (] = [I|B].
From the right-hand portion of this augmented matrix, we see
B =E;---E)E;.
From the left-hand portion, we see
Ey---EyE1A=BA =1

Thus B is not only the right-hand inverse of A as we saw from conception of our method
for finding inverses, but is the necessary left-hand inverse too.

Let us proceed to further develop the theory of invertible matrices. We begin with
the following theorem.
If A and B are invertible matrices of the same size, then AB is invertible and

(AB)'=B71A7".

It suffices to show that B~'A~! is the inverse of AB. This we do by showing the
necessary products are /:

ABB AT = AIAT = A4 =1
and
BlA AR =B"IB =B'B =1L ®
Notice that (AB)~! is not A~!B~!. The result of Theorem 1.7 generalizes to

products of invertible matrices with more factors as follows: If Ay, A,,..., A, are
invertible matrices of the same size, then

(A1Ay - A" = An—l ...Az*lAl—l
since
(A1 A) 7 = (A2A5--- A) AT
=(As---A)TIASIAT = = A A TAT
Next, we consider the invertibility of elementary matrices.
If E is an elementary matrix, then E is invertible and:

1. If E is obtained by interchanging two rows of I, then E~! = E;
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2. If E is obtained by multiplying row i of / by a nonzero scalar c, then E~! is
the matrix obtained by multiplying row i of I by 1/c;

3. If E is obtained by replacing row i of I by itself plus ¢ times row j of , then
E~! is the matrix obtained by replacing row i of I by itself plus —c times row
joflI.

In each part, let B denote the described matrix. We can then prove each part by showing
that EB = I and BE = I. This can be done by either directly calculating these products
or by using Theorem 1.6. We leave these details as exercises (Exercise 14). ®

Up to this point we have been careful to show that B is both a right-hand inverse
(thatis, AB = I) and a left-hand inverse (that is, BA = I') when verifying that a square
matrix B is the inverse of a square matrix A. There are places where a right-hand inverse
need not be a left-hand inverse or vice versa. The next theorem tells us that this is not
the case for square matrices, however.

Suppose that A and B are n x n matrices such that either AB = I or BA = 1. Then A
is an invertible matrix and A~! = B.

Let us prove this in the case when AB = I; the case BA = [ will be left as an exercise
(Exercise 17). Suppose A is not invertible. Since the reduced row-echelon form of A is
not I, there are then elementary matrices E1, E», ..., E,, sothat E, E; - - - E,, A contains
a zero row. Consequently

EIEZ"'EmAB:ElEZ"'Em (1)

contains a zero row. Buta matrix with a zero row is not invertible (Exercise 16) and hence
E\E,--- E, is not invertible. This gives us a contradiction since each E; is invertible
(Theorem 1.8) and products of invertible matrices are invertible (Theorem 1.7). Now
that we know A is invertible, we can choose E1, E», ..., E,, so that

E\Ey---E,A=1.
This along with Equation (1) gives us that B = E\E, --- E,, = AL @

Because of Theorem 1.9, from now on we will only have to verify one of AB =/
or BA = I to see if a square matrix B is the inverse of a square matrix A.

Our final result gives a characterization of invertible matrices in terms of elementary
matrices.

A square matrix A is invertible if and only if A is a product of elementary matrices.

If A is a product of elementary matrices, then A is invertible by Theorems 1.7 and 1.8.
Conversely, if A is invertible there are elementary matrices Ey, E,, ... E,, so that

E\E, --E,A =1
Thus,

A:E,;l"'Ez_lEl_lEIEZ"'EmA:En_zl..'Ez_lEl_].
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Since each E; !is an elementary matrix by Theorem 1.8, A is a product of elementary
matrices. @

EXERCISES 1.3

) ; : > g 1 9
For each of the foHowmg matrices, either ﬁnq the in 11 For A — , finil an slementary matds B
verse of the matrix or determine that the matrix is not | 3 4
invertible. so that:
1 2 2 -6 1 2
1. 2, -
-3 1} -3 9] i &4 =] g}'
r - B — 7 10
1 -2 3 2 -1 3 b) EA— }
3./ 2 -1 4 4 1 1 -2 L3 4
. 11 L1 1 s o EA=]| > * ]
02 [0 -1 3 12.E h_l'Z'E ise 5 duct of el
. Express the matrix in Exercise 5 as a product of el-
| 4 & =l b | O ementary matrices.
L 2 1 - L2 -1 3 13. Prove the following parts of Theorem 1.6.
1 -1 1 2 a) Part (1)
B 1 2 -1 -1 b) Part (2)
1 -4 1 5 ¢) Part (3)
13 1 1 6 14. Prove the following parts of Theorem 1.8.
1 -2 —-1 1 0 a) Part (1)
-1 1 0 1 1 b) Part (2)
8. 1 -1 =1 2 1 c) Part (3)
1 —1 1 4 2 15. Show that if A is an invertible matrix, then so is A ™!
and (A~)~! = A.
2 0 —-1 8 4 . -
16. Show that a square matrix containing a zero row or
9. Use the inverse of the matrix in Exercise 5 to solve a zero column is not invertible.
the system. 17. Complete the proof of Theorem 1.9 by showing if
. _ BA = I, then A is invertible and B = A~!.
2y +z=2
e . iy e g 5 ] 18. Suppose that A is a noninvertible square matrix.
y Show that the homogeneous system AX = 0 has
2x+y+2z2=5 nontrivial solutions.
10. Use the inverse of the matrix in Exercise 7 to solve 19. Suppose that A is an invertible matrix and m is a
the system. positive integer. Show that (A™)~! = (A=1)™.

_ _ 20. a) Suppose that A is an invertible n x n matrix
oy — 2y g 2l e and B and C are n x [ matrices such that
X1+2x—x3—x4 =5 AB = AC. Show that B = C.

Xt —4x) +x3+5x4 =1 b) Give an example to show that the result of part

3%+ Xy + %3 + 6y = 2 (a) need not hold if A is not invertible.

21. Suppose that A and B are n X n matrices such that
AB is invertible. Show that A and B are invertible.
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Use the inverse command in Maple or the appropriate 18 —24 25 27
corgmand in another su.itabI.e softwgre package to find o| —12-27 14 — 77 1 =7
zfilglér)l.verses of the matrices in Exercises 22-25 (if pos- 15433 —18—4V3 21443 27
—10 12 —14 —18
ro14 =25 39 29 67 26. Use Maple or another appropriate software package
58 —41 88 24 18 to find P~' AP where
22, 15 -6 31 =23 12 —46 192 36 —23 —84
-3 =22 =25 73 -4 —122 437 73 —45 —19%4
3 6 12 -24 9 A= 45 —-191 37 22 84 |,
-21 14 26 37 —120 438 74 —48 —193
—28 —6 66 —I8 —200 686 110 —67 —306
23. 23 =12 45 —13 15
-9 14 -10 26 3 S B
L 2 4 8 —-16 6 A
[ 132 —11 13 27 P=p -t 1= 2 4
—44 —-10.2 5 -9 L u & 2 4
= 15 —17.6 212 324 b8 = 8
—10 12 —14 —18

1.4 SPECIAL MATRICES AND ADDITIONAL PROPERTIES
OF MATRICES

You already have seen some special types of matrices: zero matrices, identity matrices,
and elementary matrices. There are some other special forms of matrices that will come
up in our future work. One such type are diagonal matrices, which are square matrices
whose off diagonal entries are zero. The matrix

2 0 00

0 -4 0 0
A=

0 0 70

0 0 0 3

is an example of a diagonal matrix. We will write

diag(dy, da, ..., dy)

101, Maple a square root such as +/3 is indicated by typing sqgrt (3) ; 7 is indicated by typing pi. Products
require a multiplication star so that —12 — 27 is typed as -12-2xpi; likewise, 15 + 3+/3 is typed as
15+3%sgrt (3).
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to indicate an n x n diagonal matrix

i 0 8 = B
0 d 0 -~ 0
0 00 - d

For instance, the diagonal matrix A would be written as
A = diag(2, —4,7,3)

in this notation. Some easily verified properties of diagonal matrices whose proofs we
leave as exercises (Exercise 21) are listed in Theorem 1.11.

Suppose that A and B are n x n diagonal matrices

A =diag(a, az,...,a,) and B = diag(by, by, ..., by).

1. A+ B = diag(al +bi,a + ba, ..., a, + by).
2. AB =diag(a\by, azby, ..., a,by,).

3. Aisinvertible if and only if each a; # 0. Further, if each a; # 0,
Al = diag(1/a, 1/ay, ..., 1/a,).

Two other special types of square matrices are triangular matrices, which come in
two forms: upper triangular matrices in which all entries below the diagonal are zero
and lower triangular matrices in which all entries above the diagonal are zero. The
matrix

-2 3 1
0 4 -2
0 0 5

is an example of an upper triangular matrix, and the matrix

1 00
2 30
6 0 5

is an example of a lower triangular matrix. Some easily seen properties of triangular
matrices whose proofs are left as exercises (Exercise 22) are listed in Theorem 1.12.

Suppose that A and B are n x n triangular matrices.

1. If A and B are both upper triangular, then so is A 4+ B; if A and B are both
lower triangular, then so is A + B.
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2. If A and B are both upper triangular, then so is AB; if A and B are both lower
triangular, then so is AB.

3. Aisinvertible if and only if each of the diagonal entries of A is nonzero.

The transpose of a matrix A, denoted AT, is the matrix obtained by interchanging
the rows and columns of A; to put it another way, if A = [a;;] is an m X n matrix, then
AT is the n x m matrix with entries

entl-j (AT) = 4aji.

For instance, the transpose of the matrix

1 2 38
A=
4 5 6

is

1 4
AT=12 5
3 6

In the next theorem we list some basic properties of transposes of matrices.

THEOREM 1.13 If A and B are matrices so that the indicated sum or product is defined and c is a scalar,
then:

(ATYT = A.

(A+ B)T = AT + BT.

(cA)T = cAT.

(AB)T = BT AT,

(AT)"'=(A"H"

W W N

Proof Part (4) is the most difficult to prove. We will prove it here and leave proofs of the
remaining parts as exercises (Exercise 23). Suppose A is an m x n matrix and B is an
n x [ matrix. The matrix (AB)T is an [ x m matrix whose ij-entry is

ent;;((AB)") = ent;;(AB) = Y _ ajiby. 1
k=1
BT AT is also an [ x m matrix whose ij-entry is
ent;; (BTAT) = Zentik(BT)entkj (AT) = Zbk,‘ajk. 2)

k=1 k=1

As the results in Equations (1) and (2) are the same, we have (AB)T = BT AT. (]
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A matrix A is called a symmetric matrix if

AT = A.
The matrix
1 2 -3
2 -1 4
-3 4 0

is a symmetric matrix; the matrix

]

is not symmetric. Notice that a symmetric matrix must necessarily be a square matrix.
We leave the proofs of the properties of symmetric matrices listed in the following
theorem as exercises (Exercise 24).

Suppose A and B are matrices of the same size.

1. If A and B are symmetric matrices, then so is A + B.

2. If A is a symmetric matrix, then so is cA for any scalar c.

3. ATAand AAT are symmetric matrices.

4. If A is an invertible symmetric matrix, then A~! is a symmetric matrix.

We often have applied a finite number of elementary row operations to a matrix A
obtaining a matrix B. In this setting, we say that the matrix A is row equivalent to the
matrix B. We frequently will use this terminology making statements such as “a square
matrix A is invertible if and only if A is row equivalent to I” or “a system of linear
equations AX = B has no solution if and only if the augmented matrix [A|B] is row
equivalent to an augmented matrix containing a row that consists of zero entries in the
left-hand portion and a nonzero entry in the right-hand portion.” To give a couple more
illustrations, notice that the terminology of reduced row-echelon form that we introduced
for coefficient matrices of linear systems can be applied to any matrix; that is, a matrix
is in reduced row-echelon form if:

1. Any zero rows appear at the bottom.
2. The first nonzero entry of a nonzero row is 1.
3. The leading 1 of a nonzero row appears to the right of the leading 1 of any
preceding row.
4. All other entries of a column containing a leading 1 are zero.
Using ideas we shall develop in the next chapter, it can be shown that the reduced row-
echelon form of a matrix is unique, so we may speak of the reduced row-echelon form

of a matrix and say “a matrix is row equivalent to its reduced row-echelon form.” When
we do not require property 4, the matrix is in row-echelon form. Row-echelon form is
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not unique, so we would have to say “a matrix is row equivalent to any of its row-echelon
forms.”

The notion of row equivalence gives us a relationship between matrices of the same
size that possesses the properties listed in Theorem 1.15.

THEOREM 1.15

1. Every matrix A is row equivalent to itself.
2. If a matrix A is row equivalent to a matrix B, then B is row equivalent to A.

3. If a matrix A is row equivalent to a matrix B and B is row equivalent to a
matrix C, then A is row equivalent to C.

We will leave the proof of Theorem 1.15 as another exercise (Exercise 25). In
Theorem 1.15, the first property is called the reflexive property, the second is called
the symmetric property, and the third is called the transitive property of row equiva-
lence. A relation that has all three of these properties is called an equivalence relation.
Equivalence relations are important types of relations occurring frequently throughout
mathematics. A couple of other important equivalence relations you have encountered
before are congruence and similarity of triangles. Not all relations are equivalence rela-
tions. The inequality < on the set of real numbers R is not an equivalence relation since
it is neither reflexive nor symmetric (although it is transitive).

We conclude this section by pointing out that just as we perform elementary row
operations, it is also possible to perform elementary column operations on a matrix.
As you might expect, these are the following:

1. Interchange two columns.
2. Multiply a column by a nonzero number.

3. Replace a column by itself plus a multiple of another column.

When we apply a finite number of elementary column operations to a matrix A obtaining
a matrix B, we say A is column equivalent to B.

Many (we authors included) are so used to performing row operations that they
find it awkward to perform column operations. For the most part, we will avoid using
column operations in this book. But we will see one place in the next chapter where
column operations arise. If you too feel uncomfortable doing them, notice that column
operations may be performed on a matrix A by first performing the corresponding row
operations on A” and then transposing again.

EXERCISES 1.4

Let A be the matrix Find:
) =
1 0 0 1. A5 2. A L
A = 0 -2 0 3.A 4. (A7)
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Let A and B be the matrices

1 2 0 6 —1 3
A= 0 -1 3 and B=| 0 4 -1
0 0 1 0 0 2
Find:
5. AB 6. A7
Let A and B be the matrices
-2
A:[l 2_3Jand3: 35
1 =2 1
4 1
If possible, find:
7. AT, 8. BT.
9. AT +4B. 10. 2A — 5BT.
11. (AB)". 12. BTAT.
13. ATBT, 14. AT A.
Let A and B be the matrices
1 -2 3 30 -1
A=| =2 0 4 and B = 1 4 2
3 4 5 -1 2

Determine which of the following are symmetric matri-
ces in Exercises 15-20.

15. A 16. B

17. A+ B 18. A~!

19. BBT 20. B'B

21. Prove the following parts of Theorem 1.11.
a) Part (1)
b) Part (2)
¢) Part (3)

22. Prove the following parts of Theorem 1.12.
a) Part (1)
b) Part (2)
¢) Part (3)

23. Prove the following parts of Theorem 1.13.
a) Part (1) b) Part (2)
¢) Part (3) d) Part (5)

24. Prove the following parts of Theorem 1.14.
a) Part (1) b) Part (2)
¢) Part (3) d) Part(4)

25.

26.

27.

28.

29.

30.

31.

32.

33.

Prove the following parts of Theorem 1.15.
a) Part (1)
b) Part (2)
c¢) Part (3)

Show that two matrices A and B are row equivalent
if and only if there is an invertible matrix C so that
CA = B.

Show that two matrices A and B are row equivalent if
and only if they have the same reduced row-echelon
form.

Use the result of Exercise 27 to show that the matri-
ces
1 2 -1
3 -1 2 and
1 =5 4
2 -3 3
1 -5 4
-2 —-11 7

are row equivalent.

Show that any two invertible matrices of the same
size are row equivalent.

Just as we speak of the reduced row-echelon form
of a matrix, we may speak of the reduced column-
echelon form of a matrix. Write a statement that
describes the form of a reduced column-echelon ma-
trix.

Find the reduced column-echelon form of the matrix
-3 -1 4
2 3 -1
1 -2 -3
Find A3 for
01 2
A= 0 0 3
0 0 0
A square matrix A is called a nilpotent matrix if

there is a positive integer m so that A™ = 0. Prove
that if A is a triangular n x n matrix whose diagonal
entries are all zero, then A is a nilpotent matrix by
showing A" = 0.
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34. The Maple command for finding the transpose of a commands in another appropriate software
matrix is transpose. Use Maple or another appro- package to find the reduced row-echelon form
priate software package to find AAT — 3A” for of matrix A in Exercise 34.

’ 1 -3 4 1 b) Apply the gausselim command of Maple to
matrix A. Describe the form of the answer
= 1 0 7 Maple is giving us.
A= 62 -8 4 9 ¢) Is A an invertible matrix?
-2 0 2 -6 =2
36. How could Maple commands or commands of an-
10 3 13 14 12 other appropriate software package be used to find
35. a) Either of the Maple commands rref or gaussjord the reduced column-echelon form of a matrix? Use
can be used to find the reduced row-echelon them to find the reduced column-echelon form of
form of a matrix. Use them or corresponding matrix A in Exercise 34.

1.5 DETERMINANTS

You already may have had some exposure to determinants. For instance, you might have
encountered them for finding cross products of three-dimensional vectors. Or perhaps
you have learned a method for finding solutions to some systems of linear equations
involving determinants called Cramer’s rule. (We shall discuss this rule in the next
section.) The Jacobian of a transformation is yet another example of a determinant you
might have encountered. Even if you have had some prior experience with determinants,
however, it is likely that your knowledge of them is not thorough. The purpose of this and
the remaining sections of this chapter is to a give a thorough treatment of determinants.

There are a number of equivalent ways of defining determinants. We are going to
begin with a process called a cofactor expansion approach. Suppose that A is a square
matrix:

ap dip - dip

azy dxp - dp
A —

ayl Qp2 - dpp

The minor of the entry a;; of A, denoted M;;, is the matrix obtained from A by deleting
row i and column j from A1 (Of course, this only makes sense if n > 2.) For instance,
if Ais a3 x 3 matrix,

ayl ap a3
A=| ay axn a3 |,

aszp dasy dsj

UThere are two different ways in which the concept of a minor is commonly defined. Quite a few books
as well as Maple take our approach. Many other books, however, prefer to define the minor of a;; as the
determinant of the matrix obtained from A by deleting row i and column j. In other words, minors in these
other books are the determinants of our minors.
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some minors of A are:
axp a3 ay;  aj a  aps
My = " M, = ; M3 =
asz  ass aszy  dasz a1 A

We are going to define the determinant of an n x n matrix A (also called an n x n
determinant), denoted det(A), with what is called an inductive definition as follows: If
Aisal x 1 matrix,

A =lan],

we define the determinant of A to be its entry,

det(A) = ay;.

If n > 2, the determinant of A = [a;,] is defined to be

det(A) = ay; det(My)) — ajp det(Mi2) + ajz det(My3) — - - - + (—=1)*"ay, det(M,,)

n
=Y (=D)"ay; det(My)).
j=1

In effect, we have reduced det(A) to the determinants of the smaller matrices M, j» which
(by repeating this reduction procedure if necessary) we already know how to find.
To illustrate, if A is a2 x 2 matrix,
ai an

A= ,
a dan

our definition tells us that
det(A) = ayy det([an]) — aip det([ax;]) = aijaxn — apnay;.

The products ajjax; and ajpa;; are often referred to as cross products; the determinant
of a 2 x 2 matrix can then be easily remembered as being the cross product of the
diagonal entries minus the cross product of the off diagonal entries. Determinants of
n X n matrices when n > 2 are also indicated by putting vertical bars around the entries
of the matrix.'? If we do this fora 2 x 2 matrix, our determinant formula becomes

ap;  amn
= ajax — apayi. @
azr ax

12e do not do this fora 1 x I matrix A = [aj;] to avoid confusion with the absolute value of ayj.
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For instance,

2 =3

=250~ (=3)5=27.
5 & (-3)

For a 3 x 3 matrix, our definition tells us

ail diz ais

Az a3 azy a3

a1 Ay a3 | =411 —an + @is

az; Az {

asy ass asy ass asy  dsp

asy dasy ass

where the remaining 2 x 2 determinants can be found by the formula in Equation (1).
For instance,

8 3 -3
3 = =
1 6 3|=2 8 J- (=
2 1 4 4 -2
4 -2 1

=26+ 6] —3(—1 — T2 — 22 — 24) — 107.

Continuing, a 4 x 4 determinant can be found by forming the alternating sum and
difference of the entries of the first row of the matrix times the determinants of their
respective minors, which are 3 x 3 determinants and so on.

The cofactor of an entry a;; of an n x n matrix A where n > 2, denoted C;j, is

Cij = (=)' det(M;;)

where M;; is the minor of a;;. Some cofactors of a 3 x 3 matrix,

A= ay an a3 |,

are:
axn axn ayp ass
1+1 _
G = (1) =
azxp  as axp as
az  an ari  axn
_ 149 _ 3
Cpn=(1 ==
az;  as az;  as
ayp  daps ay  dps
_ 39 3 _
Cap=(=1) =—
ai  axn ax;  an

The signs of the cofactors can be easily remembered by noting that they form the
checkerboard pattern:
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Our formula for finding the determinant of an n x n matrix A = [a; ] wheren > 2
can be written in terms of cofactors as

n
det(A) =Y ay;Cy,
g=1
which we will refer to as the cofactor expansion about the first row or simply the expan-

sion about the first row. What is remarkable is that the same procedure may be followed
for any row or column.

THEOREM 1.16 If A = [a;;]isann x n matrix withn > 2, then forany 1 <i <n

det(A) = Z a;;C;; (cofactor expansion about the ith row)
j=1

orany 1 < j <n,

n
det(A) = Z a;;C;; (cofactor expansion about the jth column).

i=1

To illustrate this theorem, earlier we had found

2 3 -2
—1 6 3 | =107
4 =2 1

by using the cofactor expansion about the first row. Notice that we get the same result
if, for instance, we expand about the third row,

2 3 =2
— 2 =2 2 3
—1 6 31 =4 —(=2) |
6 3 —1 3 -1 6
4 =2 1
=4(21) +2(4) + 15 = 107,
or the second column,
2 3 -2
-1 3 — -2
—1 6 3 |=-3 —(-2)
4 1 4 1 —1 3
4 =2 1

= —3(—13) 4 6(10) +2(4) = 107.
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Proof
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Proof
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So that you first gain an overview of the theory of determinants, we are going to
postpone many of the proofs of our results about determinants to the end of this chapter
in Section 1.7. The proof of Theorem 1.16 is the first of these we postpone.

You may raise the question: Why is it important to be able to expand a determinant
about any row or column? One reason is that sometimes we can make the work easier
by choosing a particular row or column. Consider the following example.

Evaluate the determinant

S N O N
—_
I
[N}
I
9}

Since the third column contains three zeros, let us begin by expanding about it obtaining

7 =3 4
210 1 3
0 4 6

The remaining 3 x 3 determinant is now quickly found by expanding about its first
column. Doing so, we get our answer:

(=2):7 = 84.

4 6 ®

The fact that Theorem 1.16 allows us to expand about any row or column gives us
some cases in which determinants can be quickly found. One of these is described in
the following corollary.

If an n x n matrix A has a zero row or zero column, then det(A) = 0.

This result is immediate if A is a 1 x 1 matrix, so assume n > 2. Expanding the
determinant about the row or column whose entries are all zero, the result follows. @

Corollary 1.18 describes another case in which we can quickly see the value of a
determinant.

The determinant of a triangular matrix is the product of its diagonal entries.

We will do the upper triangular case here. The lower triangular case will be left as an
exercise (Exercise 15). Suppose A is an upper triangular matrix:
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ayp dapp d4aiz o+ dip

0 axn axn - ay

A= 0 0 ass S a3y,
L 0 0 0 ct dpp .

Again the result is immediate if n = 1, so assume n > 2. Expanding det(A) about the
first column, we have

app dzz -+ dpp
asy - A3y

det(A) = any
0 0 coc dpn

If we continue to expand each remaining determinant about the first column, we obtain
det(A) = da11dz2 - - App
as desired.!3 ®

In Section 1.7 we shall use the fact that the determinant of a square matrix can be
found by performing a cofactor expansion about either its first row or first column to
obtain the result stated in Theorem 1.19.

If A is an n x n matrix, then
det(AT) = det(A).

As the square matrices grow in size, the calculations of determinants using cofactor
expansions become lengthy. We next develop a more efficient method for calculating
determinants of large square matrices involving row operations. To use this approach,
we will have to know the effects of elementary row operations on a determinant. These
effects are listed in the following theorem.

Suppose that A = [a;;] is an n x n matrix withn > 2.
1. If B is a matrix obtained from A by interchanging two rows of A, then
det(B) = —det(A).
2. If B is a matrix obtained from A by multiplying a row of A by a scalar c, then
det(B) = cdet(A).
3. If B is a matrix obtained from A by replacing a row of A by itself plus a
multiple of another row of A, then det(B) = det(A).

Because det(A) = det(AT), we can replace the elementary row operation by the

corresponding elementary column operation in each part of Theorem 1.20 and obtain

31f you are familiar with mathematical induction, you will notice that this proof could be more effectively
written by using induction on 7.
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the same result. The proof of Theorem 1.20 is another one that we postpone until
Section 1.7.

We use row operations to calculate the determinant of a square matrix A in a manner
similar to the way we use them to solve a system of linear equations with Gaussian
elimination: Use row operations to reduce to row-echelon form with the exception of
making the leading entries one. This reduced matrix is an upper triangular matrix whose
determinant is easily found by Corollary 1.18.

Of course, when we apply the row operations, we must be careful to compensate
for their effects. The following example illustrates how we may do this.

Find the determinant of the matrix

__.
|
s
)
w

,_._.
|
—
|
—_
|
NN

We begin with a first set of row operations toward the goal of getting A into an upper
triangular form. To help you follow our work, we have indicated the row operations that
will be performed.

I —1 2 3

2 1 2 1| Ry—2R,
det(A) =

1 I -1 =2 R3 — R,

1 —1 1 4 R4y — Ry

By part (3) of Theorem 1.20, performing these elementary row operations does not affect
the determinant and hence

I 2 3
0 3 =2 =5
0 2 -3 5| 3R:3—2R;
0 0 -1 1

det(A) =

where again we have indicated the row operation we will perform in the next step. This
row operation is a combination of two elementary row operations: (1) multiplying the
third row by 3 and (2) adding —2 times the second row. The second of these has no
effect, but the first changes the determinant by a factor of 3 by part (2) of Theorem 1.20.
Notice how we multiply by 1/3 to compensate, obtaining

1 -1 2 3
0 3 -2 -5
0 0 —5 —5| Rse Ry
0 0 —1 1

1
det(A) = 3
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The next indicated row operation we will perform changes the sign by part (1) of Theorem
1.20. Observe how we compensate:

1 -1 2 3
1lo 3 =2 =s
©h="310 o -1 1

0 0 =5 =5 | R4—5R3

Performing our last indicated elementary row operation, which has no effect on the
determinant, we have a desired upper triangular form from which we easily compute the

determinant:
1 -1 2 3
110 -2 =5 1
det(A)——g i B _j i ———5-1-3(—1)(~10)——10.
0 0 0 -10 @
EXERCISES 1.5
Find det(A) for 0 3 2 50
2 1 3 0 2 0 00
A= 4 ) 10. |2 4 0 1 1
_3 2 | 3 3 -2 0
4 0 1 1
by expanding about the indicated row or column in Ex-
erlc:l'iReZ“l/—lﬁ 2. Row 2 3. Row 3 [1jlsf f:w operations to find the determinants in Exercises
4. Column 1 5. Column 2 6. Column 3 . 1 -2 1
Find the determinants in Exercises 7-10 by expanding s 2 1
about appropriate rows or columns. -1 45
2 - 5 6 2 -1 31
7_2_?2 g |0 3 40 n|"l 2 -1 4
) 1o 5 2 -1 301
= 0 1 —3 0 3 2 -1 5
4 3 2 1 1 -2 1 -1
-2 5 -1 -2 2 -4 3 2
9. 13.
0 1 0 0 5 —-11 2 -6
02 0 =2 1 -1 1 3




14.

1 -1 2
1 2 -1
2 —1 3
-1 1 4
3 —4 5

=]
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13 The Maple command for finding the determinant of a
p g
-1 1 square matrix is det. Use this Maple command or the cor-
1 4 responding command in another appropriate software
5 package to find the determinants in Exercises 17 and 18.
T 4 6 3
2 8

—5 5 4 =2 3

15. Complete the proof of Corollary 1.18 by showing 17. 6 12 —14 3 5
that the determinant of a lower triangular matrix is 13 —1 3 2 4

16.

the product of its diagonal entries.

3 =2 8 -7 6

Suppose that A is a square matrix in which one of — 7 4 5
the rows is a scalar multiple of another. Show that

det(A) = 0. Does the same result hold if A has one 18. 12 7w—4 2 =5
of its columns being a scalar multiple of another? 3 -8 7w —38 7
Why or why not? 6 4 -5 742

1.6 FURTHER PROPERTIES OF DETERMINANTS

THEOREM 1.21

Proof

In this section we shall see some additional properties of determinants. Our first such
property gives us a relationship between the value of the determinant of a square matrix
and its invertibility.

A square matrix A is invertible if and only if det(A) # 0.

Suppose that A is invertible. Then A is row equivalent to /. From Theorem 1.20, we
can see that the determinants of two row equivalent matrices are nonzero multiples of
one another. Thus det(A) is a nonzero multiple of det(/) = 1 and hence det(A) # O.
Conversely, suppose det(A) # 0. Were A not invertible, the reduced row-echelon
form of A, let us call this matrix B, would have a zero row. But then det(B) = 0 by
Corollary 1.17. Since det(A) is a multiple of det(B), we obtain det(A) = 0, which is a
contradiction. @

Theorem 1.21 is useful for determining if a square matrix A is invertible when
det(A) can be quickly calculated. For instance, since

-2 3 0 g
4 10 2 |=-2 =—-2£0,
-5 7 B =7 ’
the matrix
-2 30
4 10 2
=5 T 0

is invertible.
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LEMMA 1.22

Proof

LEMMA 1.23

Proof

THEOREM 1.24

Proof
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Our next major objective will be to obtain a result about the determinant of a product
of matrices. To reach this objective, we first prove a couple of lemmas about elementary
matrices.

Suppose that E is an elementary matrix.

1. If E is obtained from 7 by interchanging two rows of 7, then det(E) = —1.

2. If E is obtained from / by multiplying a row of / by a nonzero scalar c, then
det(E) = c.

3. If E is obtained from I by replacing a row of [ by itself plus a multiple of
another row of 7, then det(E) = 1.

These are all consequences of Theorem 1.20. For example, part (1) follows because
det(E) = —det(/) = —1 by part (1) of Theorem 1.20. We leave the proofs of the
remaining two parts as exercises (Exercise 13). @
If Aisann x n matrix and E is an n x n elementary matrix, then

det(EA) = det(E) det(A).
More generally, if £y, E», ..., E, are n x n elementary matrices, then

det(E1Ey -+ EnA) = det(E Ey - - - Ey) det(A).

The first part is an immediate consequence of Theorem 1.6, which tells us that left
multiplication by an elementary matrix performs an elementary row operation, Theorem
1.20, which tells us the effect of an elementary row operation on a determinant, and
Lemma 1.22. The second part follows by repeated use of the first part:

det(E(Ey - - En,A) =det(E;)det(E; - -- E,A)

= det(E;) det(E,) - - - det(E,,) det(A)
= det(E; E;) det(Es3) - - - det(E,,) det(A)
=det(E E,--- E,) det(A). ®
Now we are ready to prove Theorem 1.24.
If A and B are n x n matrices,

det(AB) = det(A) det(B).

We will break our proof into two cases: one in which A is invertible and the other in
which itis not. If A is invertible, then A is a product of elementary matrices by Theorem
1.10 and the result now follows from Lemma 1.23.
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Proof
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Suppose A is not invertible. Then det(A) = 0 by Theorem 1.21 and consequently
det(A) det(B) = 0.

Since A is not invertible, A is row equivalent to a matrix with a zero row. Thus there
are elementary matrices E;, Es, ..., E, so that E{E, --- E,,A has a zero row. Then
E\E,--- E,AB has a zero row and consequently

det(E1E2--- Eq,AB) = 0.
Hence
det(E\E,--- E,,) det(AB) =0,
which implies
det(AB) =0

since det(E1E;--- E,) # 0, and we again have the desired result that det(AB) =
det(A) det(B). @

As a consequence of Theorem 1.24, we have the following corollary.
If A is an invertible matrix, det(A~!) = 1/ det(A).

Since
det(A ") det(A) = det(A™'A) = det(]) = 1,
it follows that det(A~!) = 1/ det(A). ®

If A = [a;;]is an n x n matrix, the n x n matrix with entries the cofactors of A,

Cu Cp -+ Cy
Cy Cp -+ Cyy
Cnl Cn2 SR Cnn

is called the cofactor matrix of A. The transpose of this cofactor matrix is called the
adjoint of A and is denoted adj(A); that is,

Cn Cy - Cn
Gy Cp » &
adi(A) = 12 .22 .2
Cin Cop Crn
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COROLLARY 1.27
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is
4 -3
-2 1
. 4 =2
adj(A) = 5 1|

A curious feature of the adjoint of a square matrix is Theorem 1.26.

and

If A is a square matrix,

Aadj(A) = adj(A)A = det(A)I.

The proof of Theorem 1.26 is another one we postpone until the next section. Notice
this theorem is telling us that adj(A) is almost the inverse of A. Indeed, we have
Corollary 1.27.

If A is an invertible matrix, then

1
1 y
AT = det(A) adj(A).

=[5 ]

just prior to Theorem 1.26, Corollary 1.27 tells us that

PSS 4 2 [ -2 1
—det(A)aJ()_—_Z 4 1| |32 <182 |

As arule, however, Corollary 1.27 is not an efficient way of finding inverses of matrices
because of all the determinants that must be calculated. The approach used in Section
1.3 is usually the better way to go. This adjoint method for finding inverses is used
primarily as a theoretical tool.

To develop our final property of this section, consider a linear system with two
equations and two unknowns:

For instance, for the matrix

anx +apy = by
arx +any = b,.

Let us start to solve this system. We could use our matrix method, but we will not bother
for such a small system. Instead, let us eliminate y by multiplying the first equation by
apy and subtracting a;; times the second equation. This gives us

(a11a20 — az1a12)x = axnby — apnb,.
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If aj1an — anay # 0, we then have
anb; —apnb,
anayn — apay
Carrying out similar steps to find y (try it), we find
_auby —anb
ajjay — andy

Our formulas for x and y can be conveniently expressed in terms of determinants. If we
let A denote the coefficient matrix of the system,

and A and A, be the matrices obtained from A by replacing the first and second columns,
respectively, of A by the column

so that

then
det(A;) det(A,)
x = , =
det(A) 0T det(A)

We have just discovered what is known as Cramer’s rule, named after Gabriel
Cramer (1704-1752). Variations of this rule were apparently known prior to Cramer,
but his name became attached to it when it appeared in his 1750 work Introduction a
Panalyse des lignes courbes algébriques. The rule extends to any system of n linear
equations in » unknowns provided the determinant of the coefficient matrix is nonzero
(or equivalently, provided the coefficient matrix is invertible).

(Cramer’s Rule) Suppose that AX = B is a system of n linear equations in n unknowns
such thatdet(A) # 0. Let A; be the matrix obtained from A by replacing the first column
of A by B, A, be the matrix obtained from A by replacing the second column of A by
B, ..., A, be the matrix obtained from A by replacing the nth column of A by B. Then

_ det(4y) _ det(Ay)  det(A,)
T At T de@@ U T Ay

X1

The proof of Cramer’s rule for a general positive integer n will be given in the next
section. Let us look at an example using it.
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EXAMPLE 1 Use Cramer’s rule to solve the system

x+y—z=2
2x—y+z=3
x =2y iz =1,

Solution  We first calculate the necessary determinants (the details of which we leave out).

1 1 -1
det(A) = 2 -1 1 (=3
1 -2 1
2 1 -1
det(A;) =] 3 -1 1 | =5
1 -2 1
1 2 -1
det(Ay) =1| 2 3 1 (=1
1 1 1
1 1 2
det(A3) =2 -1 3 |=0
1 -2 1
Our solution is then:
o

As is the case with the adjoint method for finding inverses, Cramer’s rule is usually
not a very efficient way to solve a linear system. The Gauss-Jordan or Gaussian elimi-
nation methods are normally much better. Note too that Cramer’s rule may not be used
should the system not have the same number of equations as unknowns or, if it does have
as many equations as unknowns, should the coefficient matrix not be invertible. One
place where it is often convenient to use Cramer’s rule, however, is if the coefficients
involve functions such as in the following example.

EXAMPLE 2  Solve the following system for x and y:
xe* sint — ye* cost = 1

2xe? cost + 2ye sint = 1.
y

Solution  In this example, we have:

e¥sint  —e? cost

det(A) = : = = 2¢* sin’ t + 2¢* cos? t = 2™
2e* cost  2e*sint



1
det(A;) = ‘ .

det(A4,) =

—2i

. 1
x=¢ ’smt—k?e‘

EXERCISES 1.6

2i

2e¢¥ cost t
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—e* cost

=2¢*sint + te? cost

2¢% sin ¢t

fsint 1 - g
= te*' sint — 2e* cost

2 —2 2

1 .
"cost, =14 "sint — e * cost ®

Use Theorem 1.21 to determine whether the following
matrices are invertible.

S N

-1 0 2 2 -1 =3
3. 1 1 =1 4. | 1 1 3
30 1 6 0 0

Use the adjoint method to find the inverse of the follow-
ing matrices.

slai] e[ ]

Use Cramer’s rule to solve the following systems.

7. 3x—4y=1 8. Tx+y=4
2x +3y =2 2x —5y =38

9. 3x—yptz=1 10. 5x—4y+4+z=2
2x+y—3z=3 2x —3y—2z=4
%= dylsg =7 3x+y+3z=2

11. Use Cramer’s rule to solve the following system for
x and y.
xe'sin2t + ye' cos2t =t
2xe' cos2t — 2ye’ sin2t = 12
12. Use Cramer’s rule to solve the following system for
x,y,and z.
ex+ePy+eiz=1
elx +2e%y —e iz =1t
e'x +4e¥y + etz =12

13. Prove the following parts of Lemma 1.22.

a) Part (2)

b) Part (3)

14. a) An invertible matrix A with integer entries is
said to be unimodular if A~! also has integer
entries. Show that if A is a square matrix with
integer entries such that det(A) = =1, then A is
a unimodular matrix.

b) Prove the converse of the result in part (a); i.e.,
prove that if A is a unimodular matrix, then
det(A) = +1.

15. a) Find the determinants of the following matrices.

3 =2 1 2
A= and B =
] L]

b) Find det(AB), det(A™!), and det(BT A1)
without finding AB, A~!, or BTA™!.

¢) Show that det(A + B) is not the same as
det(A) + det(B).

16. Show thatif A and B are square matrices of the same
size, then det(AB) = det(BA).

17. a) Either of the commands adj or adjoint can be
used in Maple to find the adjoint of a square
matrix. Use either one of these Maple
commands or corresponding commands in
another appropriate software package to find
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the adjoint of the matrix b) Use your software package and the result of

A=

part (a) to find adj (A)A.

; =3. -2
12 . 31 ¢) By part (b), what is the value of det(A)?

1 12 —2 2.6

-2.1 37 1 —4

2.3 4 -3 65

1.7 PROOFS OF THEOREMS ON DETERMINANTS

LEMMA 1.29

Proof

In this section we will prove those results about determinants whose proofs were omitted
in the previous two sections. Many of these proofs will use the technique of mathematical
induction, a technique of proof with which we will assume you are familiar.

Recall that we defined the determinant of an n x n matrix A = [a;;] as the cofactor
expansion about the first row:

det(A) = Y a1;Cy; = Y (—1D"ay; det(M).

j=1 j=1

As we prove some of our results, we will sometimes have minors of minors; that is,
we will have matrices obtained by deleting two rows and two columns from A. For
notational purposes, let us use

M (ij, kI)

to denote the matrix obtained from A by deleting rows i and k (i # k) and columns j
and [ (j #1).

Our first theorem about determinants (Theorem 1.16) was that we could expand
about any row or column. As a first step toward obtaining this result, we show that we

can expand about any row.

If A = [a;;]is an n X n matrix withn > 2, thenforany i,1 <i <n,

det(A) = Z a,-jCij.
j=1

The verification is easy for n = 2 and is left as an exercise (Exercise 1). Assume the
result is valid for all k& x k matrices and suppose that A = [g;;]isa (k+ 1) x (k + 1)
matrix. There is nothing to show if i = 1, so assume i > 1. By definition,

k+1
det(A) = > (=1)'"ay; det(M, ).
j=1
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Using the induction hypothesis, we may expand each det(M;) about its row and obtain

k+1 i
det(A) = ) (=D'"ay, { D (=D ay de (1, iD))

j=1 I=1

k+1
+ > (—1>"—1+’-‘a,-zdet(M(1j,il))}

I=j+1
k1 j—1 @)

=Y (=D ayja; det(M (1], il))
j=1 I=1
K+l k+1
+ D (=D ey det(M (15, D))
j=11=j+1
(On the second summation, / — 1 occurs in the exponent of —1 instead of [ since the
[th column of A becomes the (/ — 1)st column of M;; when ! > j.) Now consider the
cofactor expansion about the ith row, which we write as

k+1
> (=D ay det(My).

=1

Let us expand each det(M;;) about the first row:

k1 =1
S ay {3 )y, det(M i, 1)
I=1 =l
k1
n Z (=D det(M (il, 1))
Parpy 2
k1 1—1

=D ) (=DM auay; det(M L, 1))

I=1 j=1
k+1 k+1
+ ) Y (=Dt ayay; det(M(il, 17)).

I=1 j=i+1

While they may look different, the results in Equations (1) and (2) are the same. To see
why, consider a term with a j and an /. If j > [, this term in Equation (1) is

(=D ay a0, det(M (1, iD)),

which is exactly the same term as we have in Equation (2) for j > [. We leave it as an
exercise (Exercise 2) to show that the terms with j < [ in Equations (1) and (2) are the
same. [ ]

We next show that we can expand about the first column.
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If A = [a;;]is an n x n matrix with n > 2, then

det(A) = Zailc,-l.
i=1

We again use induction on n. We will let you verify this for n = 2 (Exercise 3). Assume
this result holds for all k x k matrices and let A = [g;;] be a (k + 1) x (k 4 1) matrix.
By definition
k+1
det(A) = Z(—I)l+ja1j det(M, ;)

j=1
k+1

= ay det(M1) + Y _(=1)'"ay; det(My)).
j=2

Using the induction hypothesis, we expand each det(M;;) about its first column for
J > 2 and obtain

k+1 k+1
det(A) = ayy det(My) + Y (=1)"™ay; 1Y (=g det(M (15, i1))
=2 i=2
k+1 k+1 (3)
= an det(Mp) + ) Y (=) ay;a; det(M (15, i1)).
j=2 i=2

Writing the cofactor expansion about the first column as

k+1 k+1
Y (=1)a; det(Miy) = an det(Miy) + Y (1) a;y det(Miy)
=1 i=2

and then expanding each det(M;;) for i > 2 about its first row, we obtain

k+1 k+1
an det(Mn) + ) (=D ai 1 Y (=D ay; det(M (i1, 1))
i=2 j=2
k41 k+1 @)
= ay det(M1) + ) Y (=D Haga; det(M (i1, 1))
i=2 j=2
Since the results of Equations (3) and (4) are the same, our proof is complete. @

Before completing the proof of Theorem 1.16, we use Lemma 1.30 to prove Theorem
1.19. For convenience, let us restate Theorem 1.19 as Theorem 1.31.

If A is an n x n matrix,

det(AT) = det(A).

Here we use induction too, only we may start with n = 1 where the result is trivial for a
1 x 1 matrix A = [a11]. Assume the result holds for any k x k matrix and let A = [a;;]
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bea (k+ 1) x (k + 1) matrix. Note that the j1-entry of AT is a;; and its minor is M,
where M is the minor of the entry a;; of A. Thus if we expand det(AT) about the first
column,

k+1
det(AT) =Y "(=1)/*ay; det(M])).

j=1
By the induction hypothesis, det(M 1Tj) = det(M;;) and hence

k+1
det(A7) = > (=)' ay; det(M;;) = det(A). @

j=1

To complete the proof of Theorem 1.16, we must show that forany 1 < j < n,
det(A) = Y a;;Cij = Y (=) ay; det(M;;)
i=1 i=1

where A = [g;;] is an n x n matrix with n > 2. To obtain this, we first expand det(AT)
about row j (which we may do by Lemma 1.29). This gives us

det(A") = > (=1)/*a;; det(M]).

i=l

Now applying the result of Theorem 1.31 to det(A”) and each det(M;), we obtain the
desired result. '

Another result we have not proved that we now prove is Theorem 1.20, which we
restate as Theorem 1.32.

Suppose that A = [a;;] is an n x n matrix withn > 2.

1. If B is a matrix obtained from A by interchanging two rows of A, then
det(B) = —det(A).

2. If B is a matrix obtained from A by multiplying a row of A by a scalar ¢, then
~det(B) = cdet(A).

3. If B is a matrix obtained from A by replacing a row of A by itself plus a
multiple of another row of A, then det(B) = det(A).

1. We proceed by induction on 7 leaving the first case with n = 2 as an exercise
(Exercise 4.) Assume part (1) holds for all k x k matrices and let A = [g;;] be a
(k 4+ 1) x (k+ 1) matrix. Suppose that B is obtained from A by interchanging
rows i and [. We are going to expand det(B) about a row other than row i or
row [. Pick such a row. Let us call this the mth row. We have ent,,; (B) = a;.
If we interchange the rows of the minor M,,; of the entry a,,; of A that come
from rows i and / of A, we obtain the minor of ent,,;(B) in B. By the
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induction hypothesis, the determinant of this minor of B is — det(M,,;). Thus,

k+1
det(B) = Y (—=1)"a,;(— det(M,,))) = — det(A).
j=1

2. Suppose that B is obtained from A by multiplying row i of A by ¢. The minor
of ent;;(B) of B is the same as the minor M;; of the entry a;; of A. Hence if
we expand about the ith row,

det(B) = Y "(=1)'"ca;; det(M;;) = c det(A).

j=1

Before proving part (3), we prove the following lemma.

If A is an n x n matrix where n > 2 with two rows that have the same entries, then
det(A) = 0.

Suppose that row i and row j of A have the same entries. Let B be the matrix obtained
from A by interchanging rows i and j. On the one hand, by part (1) of Theorem 1.32,
we have

det(B) = —det(A).
On the other hand, B = A and hence
det(B) = det(A).
Thus det(A) = — det(A), which implies det(A) = 0. ®

Suppose that B is obtained from A by replacing row i of A by itself plus ¢ times row
[ of A. Then ent;;(B) = a;; + ca;; and the minor of ent;;(B) of B is the same as the
minor M;; of the entry a;; of A. If we expand det(B) about row i,

det(B) = Y (=)' (ayj + can;) det(M;;)

d=l
=Y (=D)Ma;; det(My) + ¢ Y (1) ay,; det(M;)).
j=1 j=1
The second sum is the same as the determinant of the matrix obtained from A by replacing

the ith row of A by row m and hence is zero by Lemma 1.33. Thus

det(B) = » (1) a; det(M;;) = det(A).

Jj=1

The proof of our result about the product of a square matrix and its adjoint (Theorem
1.26) is another place where Lemma 1.33 is used. We restate this result as Theorem 1.34.
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If A is a square matrix, then

A adj(A) = adj(A)A = det(A)I.

We will prove that A adj(A) = det(A)[ and leave the proof for adj(A) A as an exercise
(Exercise 5). Suppose A is an n x n matrix. Notice that

ent;; (A adj(A)) = > auCj.
k=1
Ifi = j,
ent;; (A adj(A)) = Y _ aiCiy = det(A).
k=1
Ifi #j,

enti; (A adj(A)) = Y aiCij

k=1
is the determinant of the matrix obtained from A by replacing the jth row of A by the

ith row of A. Since this determinant contains two rows with the same entries, we have

n

enti; (A adj(A)) = > " auCji =0
k=1

when i # j. This gives us A adj(A) = det(A)I. ®

The final result about determinants we have yet to prove is Cramer’s rule, restated
as Theorem 1.35.

Suppose that AX = B is a system of » linear equations in n unknowns such that
det(A) # 0. Let A; be the matrix obtained from A by replacing the first column of A by

B, A, be the matrix obtained from A by replacing the second column of A by B, ..., A,
be the matrix obtained from A by replacing the nth column of A by B. Then
det(A)) det(Ay) det(A,)
X1 = . M= ; o — =
' det(A) 27 det(A) det(A)
Since
e adj(A)
= det(a) OV
we have
1
X =A"'B=——adj(A)B.

= det(A)
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Thus foreach 1 <i < n,

1 n
y = b
YT Let(A) ; e

The summation is exactly the determinant of A; expanded about the ith column and

hence
det(A;
g BHAY) ®
det(A)
EXERCISES 1.7
1. Prove Lemma 1.29 for n = 2. 7. A matrix of the form
2. Show that the terms with j < [ in Equations (1) and 1 1 1 P 1
(2) are the same.
X1 X2 X3 ki Xn
. Prove Lemma 1.30 for n = 2. 2 2 5 "
V = X X5 x5 X

. Prove part (1) of Theorem 1.32 for n = 2.

. Prove that adj(A)A = det(A)[. : : : :

. If A is an n x n matrix and c is a scalar, show that xiH XZA)H ]31—I x:';_l
det(cA) = c" det(A). 14

N Ut AW

is called a Vandermonde matrix.

a) Show thatifn =2,
det(V) = xo — x3.
b) Use row operations to show that if n = 3,
det(V) = (x2 — x1)(x3 — x1) (X3 — x2).
¢) Use row operations to show that if n = 4,
det(V) = (x2 — x1)(x3 — x1) (x4 — x1)(x3 — x2)
(x4 — x2) (x4 — x3).
d) In general,
no (i-1
det(vV) =] {]_[(x,- = x,-)} .
j=2 li=1

Prove this result.

14Named for Alexandre Théophile Vandermonde (1735-1796) who studied the theory of equations and de-
terminants.



Vector Spaces

Your first encounter with vectors in two or three dimensions likely was for modeling
physical situations. For example, winds blowing with speeds of 5 and 10 miles per hour
45° east of north may be illustrated by the velocity vectors u and v in Figure 2.1 drawn
as directed line segments of lengths 5 and 10 units pointing 45° east of north. A force
pushing a block up an inclined plane might be illustrated by drawing a force vector F
as in Figure 2.2. In your calculus courses you should have encountered many uses of
vectors in two and three dimensions in the study of equations of lines and planes, tangent
and normal vectors to curves, and gradients, just to name a few.

Figure 2.1

&

Figure 2.2

65
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Vector Spaces

Were someone to ask you to briefly tell them about vectors you might well respond
by saying simply that a vector v is a directed line segment in two or three dimensions. If
we place a vector so that its initial point is at the origin (choice of the initial point does
not matter since we are only trying to indicate magnitude and direction with a vector)
and its terminal point is (a, b) in two dimensions or (a, b, ¢) in three dimensions, we
can denote the vector by its terminal point as

v={(a,b) or v=(a,b,c)

in two or three dimensions, respectively. (Other standard notations you might have
used instead are v = (a, b) or v = ai + bj in two dimensions and v = (a, b, ¢) or
v = ai + bj + ck in three dimensions. In Chapter 1 we mentioned that in this text we
will write our vectors in two, three, and even n dimensions as column matrices or column
vectors.) Vectors are added by the rules

(a1, b1) + (a2, b2) = (a1 + az, by + ba)
or
(a1, b1, ¢1) + (az, b2, c2) = (a1 + az, by + by, 1 + ¢2)
and we have a scalar multiplication defined as
k(a,b) = (ka,kb) or k(a,b,c) = (ka, kb, kc)

(which, of course, are special cases of matrix addition and scalar multiplication).

We could continue discussing things such as the geometric impact of vector addi-
tion (the parallelogram rule), the geometric impact of scalar multiplication (stretching,
shrinking, and reflecting), dot products, cross products, and so on, but that is not our
purpose here. Our purpose is to study sets of vectors forming a type of structure called a
vector space from an algebraic point of view rather than a geometric one. To us a vector
space will be a set on which we have defined an addition and a scalar multiplication
satisfying certain properties. Two old friends, vectors in two dimensions and vectors in
three dimensions, are two examples of vector spaces, but they are not the only ones as
you are about to see.

2.1 VECTOR SPACES

As just mentioned, a vector space will be a set of objects on which we have an addition
and a scalar multiplication satisfying properties. The formal definition of a vector space
is as follows.

DEFINITION A nonempty set V is called a vector space if there are operations
of addition and scalar multiplication on V such that the following eight properties
are satisfied:

1. u+v=v+4uforalluandvin V.

2. u+W+w)=w+v)+wforallu,v,and win V.



EXAMPLE 1

2.1 Vector Spaces 67

3. ThereisanelementQin V sothatv+0 =wv forall vin V.

4. For each v in V there is an element —v in V so that v + (—v) = 0.
5. c¢(u + v) = cu + cv for all real numbers ¢ and for all ¥ and v in V.
6. (c+ d)v = cv + dv for all real numbers ¢ and ¢ and for all v in V.
7. c(dv) = (cd)v for all real numbers ¢ and d and forall vin V.

8. l-v=vforallvinV.

The eight properties of a vector space are also called the laws, axioms, or postulates
of a vector space. The elements of the set V when V is a vector space are called the
vectors of V and, as we have done already with matrices, real numbers are called scalars
in connection with the scalar multiplication on V.! Actually, not all vector spaces are
formed using real numbers for the scalars. Later we shall work with some vector spaces
where the complex numbers are used as scalars. But for now, all scalars will be real
numbers.

Some terminology is associated with the vector space properties. Property 1 is
called the commutative law of addition, and property 2 is called the associative law
of addition. The element O of V in property 3 is called an additive identity or a zero
vector, and the element —v of V in property 4 is called an additive inverse or a negative
of the vector v. Because of commutativity of addition, we could have equally well put
our zero and negative vectors on the left in the equations in properties 3 and 4, writing
them as

O+v=v and —v+v=0.

Properties 5 and 6 are distributive properties: Property 5 is a left-hand distributive
property saying that scalar multiplication distributes over vector addition, and property
6 is a right-hand distributive property saying that scalar multiplication distributes over
scalar addition. Property 7 is an associative property for scalar multiplication.

Let us now look at some examples of vector spaces.

From our matrix addition and scalar multiplication properties in Chapter 1, we imme-
diately see the set of n x 1 column vectors or n-dimensional vectors R”" satisfies the
eight properties of a vector space under our addition and scalar multiplication of column
vectors,

X1 Vi X1+ ¥y X1 CX1
X V2 X2+ 2 % cx2
+ ) = ) and ¢ ) =
Xn Yn Xn + Yn Xn CXy

I print, vectors are often set in boldface type and, in handwritten work, marked with an arrow over the top
to distinguish them from scalars. Such confusion will not arise in this text, however, since we will reserve the
lowercase letters u, v, and w for vectors. Scalars usually will be denoted by letters such as a, b, ¢, and d.

2 In cases where zero vectors could be confused with the scalar zero, we will put zero vectors in boldface
print as 0 as we did for zero matrices in Chapter 1.
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Hence R” (of which vectors in two and three dimensions are special cases when we write
these vectors in column form) is a vector space for each positive integer 7. ®

Row vectors of a fixed length n would also form a vector space under our addition and
scalar multiplication of row vectors. More generally, so would matrices of a fixed size
under matrix addition and scalar multiplication. Let us make this our second example.

The set of m x n matrices M,, ., (IR) satisfies the eight properties of a vector space under
matrix addition and scalar multiplication and hence is a vector space. ®

Making our definition of a vector space as general as we have done will prove
valuable to us in the future. For instance, various sets of real-valued functions® form
vector spaces as is illustrated in the next example. Because of this, sets of real-valued
functions will have many properties similar to those enjoyed by our matrix vector spaces,
which we shall exploit later in our study of differential equations.

Let F'(a, b) denote the set of all real-valued functions defined on the open interval (a, b).4
We can define an addition on F (a, b) as follows: If f and g are two functions in F (a, b),
we let f + g be the function defined on (a, b) by

(f +&)&x) = fx) + gl).

We can also define a scalar multiplication on F'(a, b): If ¢ is a real number and f is a
function in F(a, b), we let ¢f be the function defined on (a, b) by

(€f)x) = cf(x).

Show that F(a, b) is a vector space under this addition and this scalar multiplication.

We verify that the eight properties of a vector space are satisfied.

1. Do we have equality of the function f + g and g + f forall f and g in
F(a, b)? To see, we have to check if (f + g)(x) is the same as (g + f)(x) for
any x in (a, b). If x is in (a, b),

(f+8X) =fx) +8kx) =g+ fx) =@+ NH)

(the second equality holds since addition of the real numbers f(x) and g(x) is
commutative) and we do have f + g =g + f.

2. Do we have equality of the functions f + (g + &) and (f + g) + & for any f,
g,and i in F(a, b)? We proceed in much the same manner as in the previous

3 A real-valued function is a function whose range is contained in the set of real numbers. For instance, the
function f from R to R defined by f(x) = x? is real-valued; so is the function f from R? to R defined by
F(x,») = x2 + y%. For a fixed positive integer n the determinant is a real-valued function from My xy ®R)
toR.

4 For instance, the functions given by f(x) = x2, f(x) = |x|, f(x) = sinx, f(x) = ¢*, and the greatest
integer function would be elements of F(—oco, 00); these five functions along with the functions defined by
fx)=1/x, f(x) =1Inx, and f(x) = cotx would be elements of F(0, 7).
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part. For any x in (a, b),

(f+@+m)x) =)+ @g+hx) = fx)+ gk +hkx))
=(fx)+8@) +hx)=(f+8Kx)+h(x)
=((f+8 +h)x)

(the third equality holds since addition of the real numbers f(x), g(x), and
h(x) is associative) and we have f + (g +h) = (f + g) + h.

3. Do we have a zero vector? How about if we use the constant function that is O
for each x, which we shall also denote by 0 and call the zero function? That is,
the zero function is

0(x) =0.

The zero function is then an element of F'(a, b), and for any f in F(a, b) and
x in (a, b),

(f+0)(x) = f(x)+0(x) = f(x) + 0= f(x).

Hence f + 0 = f and the zero function serves as a zero vector for F (a, b).
4. What could we use for the negative of a function f in F(a, b)? How about the

function — f defined by
(=)x) =—fx)?

The function — f is in F'(a, b), and for any x in (a, b) we have
(f+EMNE) =)+ (EHE) = )+ (—f(x) =0=0(x).

Hence — f serves as a negative of f.

5. This and the remaining properties are verified in much the same manner as the
first two, so we will go a little faster now. For any real number ¢ and any
functions f and g in F(a, b),

(c(f +8)(x) =c(f +8)x) =c(f(x) +g1x) =cf(x) +cg(x)
= (cf)(x) + (cg)(x)
for any x in (a, b), and hence ¢(f + g) = ¢f + cg.
6. For any real numbers ¢ and d and any function f in F(a, b),

(c+DfHx) =(c+Dfx) =cf(x) +df(x) = (cHx) + @f)(x)
for any x in (a, b), and hence (¢ + d) f = cf + df.

Lest we be accused of doing everything for you, we will let you verify the last two
properties as an exercise (Exercise 1). ®

There is nothing special about using an open interval in Example 3. The set of real-
valued functions defined on a closed interval [a, b], which we will denote by Fla, b],
also forms a vector space under the addition and scalar multiplication of functions we
used in Example 3. More generally, the set of real-valued functions defined on any set
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S, which we will denote by F(S), is a vector space under the types of addition and scalar
multiplication of functions we used in Example 3.

The next example illustrates that not every set on which is defined an addition and
a scalar multiplication is a vector space.

EXAMPLE 4 On the set of pairs of real numbers (x, y), define an addition by
(1, y1) + (x2, y2) = (x1 + x2 + 1, y1 + y2)
and a scalar multiplication by
c(x, y) = (cx, cy).

Determine if this is a vector space.

Solution  Let us start checking the eight properties.

1. We have

(1, y0) + (x2, y2) = (X1 +x2 + 1, y1 + )

and

(x2, y2) + (x1, y1) = (2 +x1 + 1, y2 + y1).

Since these ordered pairs are the same, addition is commutative.

2. For three pairs (x1, y1), (x2, ¥2), and (x3, y3) of real numbers, we have
(x1, y1) + ((x2, y2) + (x3, ¥3)) = (x1, y1) + (2 +x3+ 1, y2 + y3)
=(x1+x2+x3+2,y1 +y2+ y3)
while

(Ge, y1) + (X2, ¥2)) + (x3, y3) = (x1 + 22+ 1, y1 + y2) + (x3, ¥3)
=x1+x2+x3+2, 91+ ¥+ y3).

Since these ordered pairs are again the same, addition is associative.

3. The pair (—1, 0) serves as an additive identity here since
x»N+EELO)=c+EED+H1L,y+0)=(x,y)
so we have property 3. (Notice that an additive identity does not have to be
0,01
4. An additive inverse of (x, y) is (—x — 2, —y) (and is not (—x, —y)!) since
N+ (=2, —y)=x+(=x-2)+Ly+ () =(-1,0)
and hence we have property 4.

5. Since

c((x1, y1) + (x2, ) = cx1 +x2+ 1, y1 + 32) = (cx1 + cx2 + ¢, ey1 + ¢y)
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while
c(x1, y1) + c(x2, y2) = (cx1, cy1) + (cxz, cy2) = (cx1 +cxa + 1, cy1 + ¢ya),

we see that property 5 does not hold for every real number c. (In fact, it holds
only when ¢ = 1.) Thus, this is not a vector space. Once we see one property
that does not hold we are done with determining whether we have a vector
space in this example. Were we to continue going through the properties, we
would also find that property 6 does not hold. (Try it.) Properties 7 and 8 will
hold. (Verify this.) @

Do not let Example 4 mislead you into thinking that unusual operations for addition
or scalar multiplication will not produce a vector space. Consider the next example.

Let R* denote the set of positive real numbers. Define addition on R by

x@y=uxy

and scalar multiplication by

cOx =x°

where x and y are in R and c is a real number. (We use the symbols @ and © to avoid
confusion with usual addition and multiplication.) Determine if R is a vector space
under this addition and scalar multiplication.

1.

Since
XPy=xy=yx=yPx
this addition is commutative.
Since
xO(YB)=x01)=@yz=xBy) Bz

this addition is associative.
The positive real number 1 is an additive identity since

x@®l=x-1=ux.

4. An additive inverse of x is 1/x. (You verify this one.)

Since
cCOEB®Y)=cO@x)) =@ =xY =x"By ' =cOxDcOYy

we have property 5.

We will let you verify that

6.

(c+d)Ox=cO0x®d0Ox,
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7. ¢cO©EOx)=(cd)©® x,and
8. 1O0x=x

as an exercise (Exercise 2) and hence we have a vector space. @
We conclude this section by discussing some properties of vector spaces. The first
theorem deals with the uniqueness of zero and negative vectors.
Suppose that V is a vector space.

1. A zero vector of V is unique.
2. A negative of a vector v in V is unique.

1. Suppose that 0 and 0" are zero vectors of V. On the one hand, since 0 is a zero
vector, we have that

0+0=0.
On the other hand,
04+0=0

since 0’ is a zero vector. Thus we see 0/ = 0.
2. Suppose that —v and —v’ are negatives of v. Notice that

—V+@W+(—v) =0 4+0= v = (- 4+ ) + (—v) =0+ (—v) = —v,
and hence we see —v = —v'. ®
Because of Theorem 2.1, we may now say the zero vector instead of a zero vector
and the negative of a vector instead of a negative of a vector.
Theorem 2.2 contains some more properties that we shall use often.
Let V be a vector space.

1. Forany vectorvinV,0-v = 0.5
2. For any real number ¢, c0 = 0.

3. Forany vectorvin V, (—=1)v = —v.

We will prove parts (1) and (3) and leave the proof of part (2) as an exercise
(Exercise 10).

1. One way to prove this is to first notice that since

0-v=0+0v=0-v+0-v

5 Hereisa place where we have put the zero vector in boldface print to distinguish it from the scalar zero.
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we have
O-v=0-v4+0-v.
Adding —(0 - v) to each side of the preceding equation, we obtain
0-v+(—0-v)=0-v+0-v+(—(0-v))

from which the desired equation

now follows.

Noting on the one hand that

A+EFE)v=1T-v+(DHv=v+ (=D
and on the other hand that

I+EED)v=0-v=0
by part (1), we have
v+ (—Dv =0.
Adding —v to each side of the preceding equation, we obtain
—v+v+(—DHv=—-v+0

and hence

(=Dv =—v.

73

Finally, we point out that we can define subtraction on a vector space V by setting
the difference of two vectors u and v in V to be

u—v=u-+(—v).

You might notice that we could have equally well subtracted the vector whenever we
added its negative in the proofs of parts (1) and (3) in Theorem 2.2.

EXERCISES 2.1

1. Complete Example 3 by showing that properties 7 properties of a vector space fail to hold.

and 8 of a vector space hold.

a) (x1, y1) + (x2, y2) = (x1, y2),

2. Complete Example 5 by showing that properties 6, c(x, y) = (cx, cy)
7, and 8 of a vector space hold.

3. Ineach of the following, determine whether the indi-
cated addition and scalar multiplication on ordered
pairs of real numbers yields a vector space. For

c(x,y)=(c+x,c+y)

those that are not vector spaces, determine which c(x,y) = (cx, cy)

b) (x1, y1) + (x2, y2) = (x1 + X2, y1 + ¥2),

©) (x1, y1) + (x2, y2) = (x1 + y2, X2 + 1),
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4. In each of the following, determine whether the indi-
cated addition and scalar multiplication of ordered
triples of real numbers yields a vector space. For
those that are not vector spaces, determine which
properties of a vector space fail to hold.

a) (x1,y1,21) + (x2, y2,22) =
(*1 + X2, Y1+ ¥y2, 21 + 22),
c(x,y,2) =(cx,y,cz)
b) (x1, y1,21) + (X2, ¥2, 22) =
(z1 + 22, Y1 + y2, X1 + X2),
¢(x, y,.2) = (cx, ¢y, €z)
©) (x1,y1,21) + (x2, y2, 22) =
(o1 +2g, 31 + 32— 2,01 +22),
c(x,y,2) = (cx,y,2)
. Show that the set of ordered pairs of positive real
numbers is a vector space under the addition and
scalar multiplication

(x1, y)+(x2, ¥2) = (x1x2, y1y2), c(x, y) = (x¢, y°).

6. Does the set of complex numbers under the addition
and scalar multiplication

(@a+bi)+(c+di)=(a+c)+ (b+d)i,
c(a + bi) = ca + cbi
where a, b, ¢, and d are real numbers form a vector
space? If not, why not?

7. Let C denote the set of all convergent sequences of
real numbers {a,}. Is C a vector space under the

2.2 SUBSPACES AND SPANNING SETS

10.
11.

12.

addition and scalar multiplication
{an} +{bn} = {an + bu}, c{all} = {Can}?

If not, why not?

. Let § denote the set of all convergent series of real

numbers Z;‘;I a,. Is S a vector space under the
addition and scalar multiplication

o0 (0] o
Doan+) ba=) (an+by),
n=1 n=1

n=1

o0 o)
¢ E ay = E ca,?
n=1 n=1

If not, why not?

. Let V be a set consisting of a single element z. De-

fine addition and scalar multiplication on V by

z+z=2, €z =Z.

Show that V' is a vector space. Such a vector space
is called a zero vector space.

Prove part (2) of Theorem 2.2.

Prove that if ¢ is a real number and v is a vector in a
vector space V such that cv = 0, then either ¢ = 0
orv=0_0.

Show that subtraction is not an associative operation
on a vector space.

We begin this section with subspaces. Roughly speaking, by a subspace we mean a
vector space sitting within a larger vector space. The following definition states this

precisely.

DEFINITION A subset W of a vector space V is called a subspace of V if W
is itself a vector space under the addition and scalar multiplication of V restricted

to W.

EXAMPLE 1

Let W be the set of all column vectors of the form
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The set W is a subset of R3. In fact, W is a subspace of R3. To see this, first notice that
the addition of R? on elements of W gives us an addition on W: For two elements

X1 XD,
Y1 and Y2
0 L O
of W, we have the sum
X1 X2 [ x4+ x
yi |+ ¥ = ity |,
0 0 0

which is also an element of W. The fact that the sum of two elements of W is again
an element of W is usually described by saying that W is closed under addition. Next
notice that the scalar multiplication of R? gives us a multiplication on W: If ¢ is a scalar
and

x
y
0
is an element of W, then
x cx
cly | = | ¢y
0 0

is an element of W. Here we say W is closed under scalar multiplication. So we have
two of the ingredients we need (an addition and a scalar multiplication) for W to be a
vector space.

Let us move on to the eight properties. Since addition on R* is commutative and
associative, it certainly is on W too since the elements of W are elements of R?. Hence
properties 1 and 2 of a vector space hold for W. Property 3 holds since

0
0
0

is an element of W. Because columns of the form
—X
-y
0

are in W, property 4 holds. As was the case with commutativity and associativity of
addition, the scalar multiplication properties 5—8 will carry over from R to the subset
W. Hence W is a vector space. ®
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THEOREM 2.3

Proof

EXAMPLE 2

Solution

EXAMPLE 3

Vector Spaces

Looking back at Example 1, notice that properties 1, 2, and 5-7 are immediately
inherited by any subset of a vector space, so we really do not need to check for them.
In fact, the next theorem tells us that the closure properties are really the crucial ones in
determining whether a nonempty subset of a vector space is a subspace.

Let W be a nonempty subset of a vector space V. Then W is a subspace of V if and only
if for all # and w in W and for all scalars ¢, u + w is in W and cu is in W.

If W is a subspace, W is a vector space and hence we immediately have W is closed
under addition and scalar multiplication. (Otherwise, W would not have an addition or
scalar multiplication.) The main part of this proof is then to show the converse: If W is
closed under addition and scalar multiplication, then W is a subspace. As already noted,
properties 1, 2, and 5-8 carry over to W from V, so we only have to do some work to
get properties 3 and 4. To get 3, pick an element v in W. (We can do this because W is
nonempty.) Since W is closed under scalar multiplication, (—1)v = —v is in W. Now
since W is closed under addition,

v+ (—v) =0
lies in W and we have property 3. The multiplying by —1 trick also gives us negatives:
For any u in W, (—=1)u = —u is in W by the closure under scalar multiplication and
hence property 4 holds. @

Let us do some more examples determining whether subsets of vector spaces are
subspaces, but now applying Theorem 2.3 by only checking the closure properties.

Do the vectors of the form

form a subspace of R??
Since the sum of two such vectors,
X1 X2 X1+ X2
+ = 3
1 1 2
has 2 not 1 for its second entry, the set of such vectors is not closed under addition and
hence is not a subspace. It is also easily seen that this set of vectors is not closed under

scalar multiplication. ®

Do the vectors of the form

x =2y

form a subspace of R3?
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THEOREM 2.4

Proof

EXAMPLE 4
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Adding two such vectors, we obtain a vector of the same form:

X1 X2 X1+ x2

Vi Ef » = yn+n
X1 —2y1 X — 2y | X1 —2y1+x2—2y
X1+ X2

= Y+
| x1+x2—2(y1 + y2)

Hence we have closure under addition. We also have closure under scalar multiplication
since

x cx
¢ y = cy
x —2y cx —2cy
Thus these vectors do form a subspace. ®

Solutions to systems of homogeneous linear equations form subspaces. Indeed this
will be such an important fact for us that we record it as a theorem.

If A is an m x n matrix, then the solutions to the system of homogeneous linear equations
AX = 0 is a subspace of R".

First notice that the set of solutions contains the trivial solution X = 0 and hence is a
nonempty subset of R”. If X and X, are two solutions of AX = 0, then AX; = 0 and
AX, = 0 so that

AX 1+ X)) =AX;+AX, =0+0=0

and hence the set of solutions is closed under addition. If X is a solution and ¢ is a scalar,
then

A(cX)=cAX =c0=0

and hence the set of solutions is closed under scalar multiplication. Thus the set of
solutions to AX = 0 is a subspace of R”. ®

In Section 2.1, we noted that sets of real-valued functions on intervals form vector
spaces. There are numerous examples of subspaces of such function spaces that will
come up in our future work listed in Examples 4-10.

Let C(a, b) denote the set of continuous real-valued functions on the open interval (a, b),
which is a nonempty subset of F (a, b). From calculus, we know that sums of continuous
functions and constant multiples of continuous functions are continuous. Hence C (a, b)
is closed under addition and scalar multiplication of functions and is a subspace of
F(a,D). ®
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EXAMPLE 5

EXAMPLE 6

EXAMPLE 7

EXAMPLE 8

EXAMPLE 9

EXAMPLE 10

THEOREM 2.5

Vector Spaces

Let D(a, b) denote the set of differentiable functions on (a, b). From calculus we know
that D(a, b) is a nonempty subset of C(a, b) that is closed under addition and scalar
multiplication of functions. Hence D (a, b) is a subspace of C(a, b). @

Generalizing Example 5, for each positive integer n, let D"(a, b) denote the set of
functions that have an nth derivative on (a, b). We have that D'(a, b) = D(a, b) and
each D"*'(a, b) is a subspace of D" (a, b). ®

For each nonnegative integer n, we will use C"(a, b) to denote the set of all functions
that have a continuous nth derivative on (a, b). Notice that C%(a, b) = C(a, b), each
C" ' (a,b)is a subspace of C"(a, b), and C"(a, b) is a subspace of D" (a, b) for each
n>1. ®

We will let C*°(a, b) denote the set of functions that have a continuous nth derivative
for every nonnegative integer n. The set C*°(a, ) is a subspace of C"(a, b) for every
nonnegative integer n. O

We will let P denote the set of all polynomials; that is, P consists of all expressions
p(x) of the form

px) = ayx" + a1 X"+ Faix +ag

where n is a nonnegative integer and each g; is areal number. Each such polynomial p(x)
gives us a function p that is an element of C*°(—o0, 0o0). Identifying the polynomial
p(x) with the function p, we may view P as being a subset of C*®(—o00, 00). Since
polynomials are closed under addition and scalar multiplication, P is a subspace of
C®(—00, 00). @

For each nonnegative integer k, we will let P, denote the set of all polynomials of degree
less than or equal to k along with the polynomial 0. In particular, P, is the set of all
constant functions p(x) = a, P; is the set of all linear functions p(x) = mx -+ b, and
P, is the set of all functions of the form p(x) = ax* + bx + ¢. Each P, is a subspace
of P. Also, P, is a subspace of Pj, P; is a subspace of P,, and so on. ®

We could equally well use other types of intervals in Examples 4-8. When doing
so, we will adjust the notation accordingly. For example, C[a, b] will denote the set of
continuous functions on the closed interval [a, b], which is a subspace of F[a, b].

We next turn our attention to spanning sets. If V is a vector space and vy, v, .. ., v,
are vectors in V, an expression of the form

am +ty+ -+ CnUp

where ¢y, ¢3, ..., ¢, are scalars is called a linear combination of vy, v,, ..., v,. Given
a fixed collection of vectors, Theorem 2.5 tells us the set of their linear combinations
forms a subspace.

If V is a vector space and vy, vy, ..., v, are vectors in V, then the set of all linear
combinations of vy, vy, ..., v, is a subspace of V.
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Proof Consider two linear combinations
Civr + v + -+, and dyvy +dava + - -+ dyy,
of v, V2, ..., v,. AS

civy + v+ -+ v, +divy +dava + -+ dyuy
=(ci+d)vi+ (2 +d)va+ -+ (¢ + dy)v,

is a linear combination of vy, vy, ..., v,, we have closure under addition. Also, for any
scalar c, the fact that

c(civr +cava + - + Cun) = ceivr + vz + - + CCuuy,
shows we have closure under scalar multiplication and completes our proof. ®

The subspace of a vector space V consisting of all linear combinations of vec-

tors vy, vz, ..., v, of V will henceforth be called the subspace of V spanned by
vy, U2, ..., v, and will be denoted
Span{v;, v, ..., Uy}

In Examples 11 and 12 we determine if a vector lies in the subspace spanned by some
vectors.

EXAMPLE 11 s the vector

2 1 1 —
- in Span - 2 0 ?
-1 |7 1
10 3 2 3

Solution  We need to see if we can find scalars ¢, ¢z, ¢3 so that

1 1 —1 2
— -2 0 )
C +.&3 +c3 =
2 —1 1
2 3 10

Comparing entries in these columns, we arrive at the system
cir+cp—c3=2
—i] — 265 = =5
2ci —cp+e3=1
3¢) 4+ 2¢; + 3¢3 = 10

and our answer will be yes or no depending on whether or not this system has solutions.
Reducing the augmented matrix for this system until it becomes clear whether or not we
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have a solution,

1 1 -4 1! 32 1 1 =1! 3
-1 -8 B -5 f = ~1 | -3
| — |
2—11;1 0 -3 3:—3
3 2 3. 10 0 -1 6. 4
I 1 =1 ¢t 2
B -1 —1 | =&
—> I £
0 0 6 6
o o0 7. 17

we see the system does have a solution and hence our answer to this problem is yes. @
EXAMPLE 12 Is 2x? 4+ x + 1 in Span{x? 4+ x, x> — 1, x 4 1}?

Solution By comparing coefficients of x2, x, and the constant terms, we see that there are scalars
c1, ¢, ¢3 so that

cl(x2 —|—x)+cz(x2 — 1D +c3(x+1) =2+ x+ 1

if and only if the system of equations

crt+c=2
ci+ec=1
—cy+c3=1

has solutions. Starting to reduce the augmented matrix for this system,

1 1 0 2 1 1 0, 2
I I

1 o1 '1|—->]0 -1 1" -11,

0 -1 1 1 0 -1 1, 1
we can see that we have arrived at a system with no solution and hence our answer to
this problem is no. ®

We say that the vectors vy, vy, . . ., v, of avector space V span V if Span{vy, vy, .. .,

v,} = V. To put it another way, vy, va, ..., v, span V if every vector in V is a linear -
combination of vy, vy, ..., v,. In our final two examples of this section we determine if

some given vectors span the given vector space.

EXAMPLE 13 Do

span R2?



Solution

EXAMPLE 14

Solution
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a
b
of R?, we must determine whether there are scalars c1, ¢ so that

[ ][ 2)-[5)

Reducing the augmented matrix for the resulting system of equations,

1 2 'a 1 2 ! a
I — I ]
2 4 i B 0 0 1 b+2a

we see that the system does not have a solution for all ¢ and b and hence the answer to
this problem is no. @

For an arbitrary vector

D0x2+x—3,x—5,3spanP2?

Here we must determine whether for an arbitrary element ax? 4 bx + ¢ there are scalars
c1, ¢z, c3 So that

cl(x2+x—3)+cz(x—5)+03~3=ax2+bx—l—c.

Comparing coefficients, we are led to the system

subspaces of R?.

1 =da

¢1 -ty =

—3¢1 — 5¢; +3¢c3 =c,

which obviously has a solution. Thus the answer to this problem is yes. @
EXERCISES 2.2
b
1. Determine which of the following sets of vectors are d) All vectors [ il wherex +y =0

y

2. Determine which of the following sets of vectors are

0 .
a) All vectors of the form } subspaces of B
LY  x
. a) All vectors of the form y
b) All vectors of the form 3 } y —4x
X =
i y+z+1
o ox b) All vectors of the form y
¢) All vectors of the form 25 g
L. - x L
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7 3 57,
12. Is in
c) Allvectors | y | wherez=x+Yy 3 4
. 11 1 1 1 0
Span ; ; L
. 0 1 1 0 0 -1
d) All vectors | y | wherez = x*+ y? 13. Is 3x2 in Span{x® — x, x> + x + 1, x% — 1}?
Z ] ) 14. Is sin(x + 7 /4) in Span{sin x, cos x}?
3. Determine which of the following sets of functions
b]. ! 2 -1
ase subispaees of Fla, ) 15. Determine if :| , [ } , { ] span R?.
a) All functions f in Fl[a, b] for which f(a) =0 | 1 1 1
b) All functions f in F[a, b] for which f(a) =1 11 171
c) Al}l functions f in C[a, b] for which 16, Determiea® | 1 .| —t || 3 | speni.
[, f&)dx=0 " " »
d) All functions f in D[a, b] for which O I S
f'x) = fx) 177 [ =17 [0
e) All functions f in D[a, b] for which f'(x) = ¢* 0 1 1
4. Determine which of the following sets of n x n ma- 17. Determine if Bk 1171 1 span R*.
trices are subspaces of M., (R). i ; 0
a) The n x n diagonal matrices - T T - -7
i i 1 07 0 1
b) The n x n upper trlzflngular' matrices 18. Determine if ’ ’
¢) The n x n symmetric matrices | O ] -1 0
d) The n x n matrices of determinant zero I 0 1
] : : : ) span My, (R).
e) The n x n invertible matrices 0 -1 -1 0
5. If A is an m x n matrix and B is a nonzero element 19, Detestring i 28 — 1, 2% 4 1. #% 41 span B
of R™, do the solutions to the system AX = B form : : ’ p 2

a subspace of R"? Why or why not? 20. Determine if x> + x2, x2 + x, x + 1 span Ps.

6. Complex numbers a + bi where a and b are integers
are called Gaussian integers. Do the Gaussian inte-
gers form a subspace of the vector space of complex
numbers? Why or why not?

Use the system of linear equation solving capabilities of
Maple or another appropriate software package in Exer-

7. Do the sequences that converge to zero form a sub- GIEES Al
space of the vector space of convergent sequences? i ]
How about the sequences that converge to a rational 2,
number? 2

8. Do the series that converge to a positive number form 21. Determine if 0 is in
a subspace of the vector space of convergent series?
How about the series that converge absolutely? -1

r2 - ) L 4 ]
9. Is }inSpan” :!,[ ]}?
L1 1 3 - 49 [ 27 [ -177 [ -317
F =i 3 - 2 - "
10. Is ] in Span , :| , [ “‘7 —2 - 42 3
L 3 ~4 4 2 i ~1 =8

- Span . 3 ’ )
1 1 1 2 2 -5 0 1
11.Is| —5 |inSpan -1 |, 1 1,1 0 2 3 7 2 1
-3 0 1 1 L 1 1 0




T 1]
44 0
1 1
-2 '] 15
11 =5

19 | | 3 _J

22. Determine if x* + x? + 1 isin
Span{x* — x> +3x —4,x* — x> —x24+x — 4,
x> 4+x2—-3x+3,
x4 x¥— 2x2 445 — 8,

Sxt—Tx3 —2x2 —x 4+9,2x* —7x3 + 1}

2.3 Linear Independence and Bases

25.

26.
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5 —2 -1 B 7 =i
2 6 3| 21 = |
. 9 21 0 3 -1
14 22 8 |'|l1 1 2

span M,,3(R).

Suppose that vy, vy, ..., v are vectors in R”. How
can we tell from a row-echelon form of the matrix

A=[v v ve]
if vy, va, ..., U span R"?
Use the answer to Exercise 25 and one of the gausse-

lim, gaussjord, or rref commands of Maple or corre-
sponding commands in another appropriate software
package to determine if the vectors

23. Determine if 1 0 =
5 =P L, -1 1 2
wt =3 0 —d, 2 |, 1|, 5 |,

%0 —5x3 4+ 6x% —8x +2, 4 —3 —3
x5+§x4—x3+2x2+3x—1, 5 V2 1
—2x% —4x? +3x -9, % .
x*=3x3 4+ mx?—-2x+1 5 i
span Ps. 7 1, 1
24. Determine if -9 —4
11 —4
-1 4 -1 -1

[—? ][(2) 2 2]’

2.3 LINEAR INDEPENDENCE AND BASES

3 3 span R,

The concept of a spanning set that we encountered in the previous section is a very
fundamental one in theory of vector spaces involving linear combinations. Another is
the concept of linear independence and its opposite, linear dependence. These concepts
are defined as follows.

DEFINITION  Suppose that vy, vy, . .., v, are vectors in a vector space V. We
say that vy, va, ..., v, are linearly dependent if there are scalars c¢1, ¢;, ..., C,
not all zero so that

civg + cup + - -+ v, = 0.

If vy, vo, ..., v, are not linearly dependent, we say vy, va, ..., v, are linearly

independent.
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EXAMPLE 1

Solution

EXAMPLE 2

Solution

We can always get a linear combination of vectors vy, v, ..., v, equal to the zero
vector by using zero for each scalar:

O-vi+0-vu+---+0-v, =0.

Carrying over the terminology we used for solutions of homogenous systems of linear
equations, let us call this the trivial linear combination of v;, va, ..., v,. We then
could equally well say vy, vy, ..., v, are linearly dependent if there is a nontrivial linear
combination of them equal to the zero vector; saying vy, v, ..., v, are linearly inde-
pendent would mean that the trivial linear combination is the only linear combination of
V1, V2, ..., U, equal to the zero vector.

Are the vectors

1 3 —
Z ] 2 |s 2
3 1

linearly dependent or linearly independent?

Consider a linear combination of these vectors equal to the zero vector of R*:

1 3 -1 0
ca|l 2 |+ 2 |+a 2 |=10
3 1 5 0

This leads us to the system of equations:

c1+3c;—c3=0
2c1 +2¢+2c3=0
3¢i + ¢+ 5¢3 =0.

Beginning to apply row operations to the augmented matrix for this system,

1 3 -1, 0 1 3 -1 ,0
22 210|500 -4 410/,
31 5.0 0 -8 8 .10

we can see that our system has nontrivial solutions. Thus there are nontrivial linear
combinations of our three vectors equal to the zero vector and hence they are linearly
dependent. ®

Are x> + 1, x% — x + 1, x + 2 linearly dependent or linearly independent?

Suppose

a2+ D+ —x+D+c(x+2)=0.
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Comparing coefficients of x2, x and the constant terms on each side of the preceding
equation, we obtain the system:
c1+c=0
—cy+c3=0
c1+cp+2c;3=0.
We do not need to set up an augmented matrix here. Notice that subtracting the first
equation from the third will give us ¢3 = 0. The second equation then tells us ¢, = 0

from which we can now see ¢; = 0 from the first equation. Since our system has only the
trivial solution, it follows that the three given polynomials are linearly independent. @

The next theorem gives us another characterization of linear dependence.

Suppose vy, vy, ..., v, are vectors in a vector space V. Then vy, vy, ..., v, are linearly
dependent if and only if one of vy, vs, ..., v, is a linear combination of the others.
Suppose v1, vy, ..., v, are linearly dependent. Then there are scalars c¢i, cs, . . ., ¢, not

all zero so that

civr + vy + -+ v, = 0. @

Suppose that ¢; # 0. Then we may solve Equation (1) for v; as follows

CiVi = —C1Vp =+ = Ci—1Vi—] = Cip1Vig1 — - — Cply
C1 Ci—1 Ci+1 Cn
Vi =r——W —smi= ——py = Viti — wari=—"1y
Ci i Ci i
and hence obtain that v; is a linear combination of vy, ..., v;_1, Vit1, ..., Uy.
To prove the converse, suppose one of vy, vy, ..., v,, let us call it v;, is a linear
combination of the other vy, vy, ..., V,:

Vi = C1up s Cim1Vio) Gt Vit 00+ CuUne

Then

—CIVL =+ = G Vin] TV = G Vig — 0 — Gy = 0.
This gives us a nontrivial linear combination of vy, v, ..., v, equal to the zero vector
since the scalar with v; is 1 and hence vy, vy, ..., v, are linearly dependent. @

If we view having one vector as a linear combination of others as a dependence
of the vector on the others, Theorem 2.6 in some sense gives us a more natural way to
think of linear dependence. Unfortunately, it is not as practical in general. Were we to
use it to check if a set of vectors vy, vy, ..., v, are linearly dependent, we could start
by checking if vy is a linear combination of v, ..., v,. If so, we would have linear
dependence. But if not, we would then have to look at v, and see if v, is a linear
combination of vy, v3, ..., v,. If so, we again would have linear dependence. If not,
we would move on to v3 and so on. Notice that checking to see if there is a nontrivial
linear combination of vy, vy, ..., v, equal to the zero vector is much more efficient.
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EXAMPLE 3

EXAMPLE 4

EXAMPLE 5

One exception is in the case of two vectors v; and v,, for having one vector a linear
combination of the other is the same as saying one vector is a scalar multiple of the
other, which is often easily seen by inspection. For example,

] = <)

are linearly dependent since the second vector is 3 times the first (or the first is 1/3 times
the second). The polynomials x> + x and x> — 1 are linearly independent since neither
is a scalar multiple of the other.

We next introduce the concept of a basis.

DEFINITION  We say that the vectors vy, vy, ..., v, of a vector space V are a
basis for V if both of the following two conditions are satisfied:

1. vy, va, ..., v, are linearly independent.
2. v1,V2,...,V, span V.

] [t

are easily seen to be linearly independent since if

0
01€1+C2€2=|:2}=|:0:|,

then ¢; = 0 and ¢; = 0. They also span R? since

b —
ae + e .
1 2

Thus e, ¢, form a basis for R. @

The vectors

As in Example 3, it is easily seen that the three vectors

1 0
e = 0 5 €y = 1 3 ég =
0 0 1
both are linearly independent and span R?. Hence ey, e, e3 form a basis for R>. ®

Generalizing Examples 3 and 4 to R”, let us use ¢; to denote the vector in R” that has 1
in the ith position and Os elsewhere:
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EXAMPLE 7

EXAMPLE 8
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17 0 7] B
0
€1 = s € = s > ey =
0 0
L 0 L0 ] L1
Here again the vectors ey, ey, . . ., ¢, are easily seen to both be linearly independent and
span R” and consequently form a basis for R, ®

Generalizing even further, the m x n matrices E;; that have 1 in the ij-position and Os
elsewhere fori = 1,2,...,mand j = 1,2,...,n are linearly independent and span
M, «»(R). Hence they are a basis for M,,, (R). For instance,

= 1 0 E 0 1 5 0 0 N 0 0
11—00,12—00721—10,22—01

form a basis for My, (R). ®

For a nonnegative integer n, the n + 1 polynomials
K" xn—l x. 1
are linearly independent since if
ax" +ox" bt ex e - 1=0,

thenc; = 0,0 =0,...,¢, =0, ¢,41 = 0. Further, they span P,; indeed we typically

write the polynomials in P, as linear combinations of x”, x"~!, ..., x, 1 when we write
them as a,x" 4+ a,_1x"~' 4+ --- 4+ a;x + ap. Hence x",x"~', ..., x, 1 form a basis
for P,. ®

The bases given in each of Examples 3—7 are natural bases to use and are called the
standard bases for each of these respective vector spaces. Standard bases are not the
only bases, however, for these vector spaces. Consider Examples 8 and 9.

Show that
1 —1
o (,] 11, 1
1 1 1

form a basis for R?.

0 The vectors e; and e, of R? in Example 3 are often denoted by i and j, respectively; the vectors e, 3, and
e3 of R? in Example 4 are often denoted by i, j, and k, respectively.



Chapter 2  Vector Spaces

Solution  Let us first show that these three vectors are linearly independent. Suppose

1 -1 0
ci1| 0 |+ 1 |+ 1 |=0
1 1 0

Setting up and reducing the augmented matrix for the resulting homogeneous system,

1 1 =1 ! @ 1 1 -1 ! @
01 110|001 o |,
11 1.0 00 2.0

we see that we have the trivial solution ¢; = 0, ¢; = 0, ¢3 = 0. Hence these vectors are
linearly independent. Similar work applied to the system of equations resulting from the
vector equation

1 -1 a
c|l 0 |+ 1 +c3 1 = b
1 1 é

shows us that our three vectors span R3. Thus these vectors do form a basis for R?. @
EXAMPLE 9 Show that x> +x — 3, x — 5, 3 form a basis for P,.

Solution  Let us first check to see if these three polynomials are linearly independent. If
(2 +x=3)+c(x =5 +c-3=0,
we have the homogeneous system:
c1 = 0
ci+c=0
—3c1 — 5¢2 +3¢3 =0.

Since this system has only the trivial solution, the three polynomials are linearly inde-
pendent. Likewise, the system of equations resulting from

@ +x—3)+alx—5+3c=ax>+bx+c

has a solution and hence our three polynomials span P,. (Indeed, if you have a good
memory, you will note that we already did the spanning part in the last example of the
previous section.) Thus we have shown x? + x — 3, x — 5, 3 form a basis for R>. @

Keep in mind that we must have both linear independence and spanning to have a
basis. If either one (or both) fails to hold, we do not have a basis.

EXAMPLE 10 Do x%2+ x — 1, x% — x + 1 form a basis for P?

Solution  Since neither polynomial is a scalar multiple of the other, these two polynomials are
linearly independent. However, they do not span P,. To see this, observe that the system
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of equations resulting from
cl(x2+x -1 —l—cz()c2 —x+1 =ax’>+bx +c

is

¢+ o =a
Cl—szb
—¢i Fep =g,

which does not have a solution for all a, b, and c¢ since adding the second and third
equations gives us

O0=b+c.

Since x? +x — 1, x2 — x + 1 do not span P,, they do not form a basis for P,. ®

Do

form a basis for R2?

Let us first see if these vectors are linearly independent. If
1 N -1 N 2 0
c c c = ,
o o 3 0

cp—cp+2c3=0
c1+cy+3c3=0.

then

Since we know that a homogeneous linear system with more variables than equations
always has a nontrivial solution (Theorem 1.1), the three given vectors are linearly
dependent and hence do not form a basis for R?. ®

There are other ways of characterizing bases besides saying they are linearly inde-

pendent spanning sets. Theorem 2.7 describes one other way.

Suppose that vy, vy, ..., v, are vectors in a vector space V. Then vy, v, ..., v, form a
basis for V if and only if each vector in V is uniquely expressible as a linear combination
of v, V2, ..., Uy,

First suppose vy, va, . .., v, form a basis for V. Let v be a vector in V. Since vy, va, .. .,
v, span V, there are scalars ¢y, ¢y, . .., ¢, so that

V= €1V1 + GV + -+ v F Gy
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We must show this is unique. To do so, suppose we also have
v=dv; +dpv, + -+ dyv,
where dy, dy, ..., d, are scalars. Subtracting these two expressions for v, we obtain
v—v=0=(c; —dpvi+ (2 —d)va+ -+ (cn — dp)vy.
Now because vy, vy, ..., v, are linearly independent, we have
cp—d; =0, ¢, —dy =0, R ¢, —d, =0

or

c1 =dy, ¢ =do, R &y =y
Hence we have the desired uniqueness of the linear combination.

To prove the converse, first note that if every vector in V' is uniquely expressible as

a linear combination of vy, vy, ..., v,, we immediately have that vy, vp, ..., v, span V.
Suppose

civ; + vy + -+ v, = 0.

Since the trivial linear combination of vy, va, ..., v, is the zero vector, the uniqueness
property gives us

¢ =0, =0, — Ep= 0
Hence vy, vy, ..., v, are linearly independent, which completes our proof. @

As amatter of convenience, we shall sometimes denote bases by lowercase Greek let-
ters in this text. If « is a basis for a vector space V consisting of the vectors vy, vy, ..., U,
and v is a vector in V, when we write v uniquely as

V=C1V; + V2 + - + CuUp,

the scalars ¢y, ¢, ..., ¢, are called the coordinates of v relative to the basis « of V.
The column vector

C]
[U]a =
Cﬂ

is called the coordinate vector of v relative to the basis «. To illustrate, suppose « is
the standard basis

€1 = ) € =



EXAMPLE 12

Solution

2.3 Linear Independence and Bases

for R?. Since for any vector

we have

a
v:|:bj,:a€1+b€2,
. a
[vle = 5 |

we then get

91

In other words, the coordinates and coordinate vectors relative to the standard basis of R?
are just the usual coordinates and column vectors. More generally, the same thing occurs
when we use the standard basis for R”. If we use the standard basis for M,,,, (R), the
coordinates of a matrix relative to it are the entries of the matrix. If we use the standard
basis for P,, the coordinates of a polynomial in P, relative to it are the coefficients of
the polynomial. If we do not use standard bases, we have to work harder to determine

the coordinates relative to the basis. Consider Examples 12 and 13.

Find the coordinate vector of
1
vi=| 3
7

relative to the basis g for R? in Example 8 consisting of

1 -1
o {,| 1], 1
1 1 1
We need to find ¢y, ¢, ¢3 so that
1 -1 1
ci|l 0 |+ 1 |4c 1 | =] 3
1 1 7

Reducing the augmented matrix for the resulting system of equations,

11 -1 {1 11 =1 ! i
01 113 [>l01 113/,
11 1.7 00 2.6
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EXAMPLE 13

Solution

EXAMPLE 14

Solution

we see
Gy =3, c =0, ¢y =4.
Hence the coordinate vector relative to j is

4
[U]ﬁ = 0 3 @
3

Find the coordinate vector of v = x + 1 relative to the basis y for P, in Example 9
consisting of x> +x —3,x — 5, 3.

We need to find ¢y, ¢, ¢3 so that
(2 +x=3)+c(x =5 +3cs=x+ 1.
We then have the system
¢ =10
cit+c =1
—3¢1 — 5S¢+ 3¢3. = 1,
which has the solution
¢ =0, =1, =2,

Hence

vy =1 1 |. ®

We can reverse the procedure of translating vectors into coordinate vectors as the
following example illustrates.

Find v in P, if

[v]y = P

where y is the basis for P, in Examples 9 and 13 consisting of x> +x — 3, x — 5, 3.

We have

v=1-(x*+x—-3)+2(x—=5+(=1)-3=x>+3x—16. ®
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Using coordinates relative to a basis gives us a way of translating elements in a
vector space into vectors with numbers. One place where this is useful is when working
on a computer: Translate vectors into coordinate vectors, then do the desired work on
the computer in terms of coordinate vectors, and finally translate the computer’s results
in coordinate vectors back into the original type of vectors. We will further develop
these number translation ideas when we come to the study of linear transformations in

Chapter 5.

EXERCISES 2.3

In each of Exercises 1-10, determine whether the given
vectors are linearly dependent or linearly independent.

1.

10.

11.

12.

13.

! 2 r 4 -8
N A I B
[6" [ —9 ] 1 4
-4 |, 6 4. 30, 1
i zj _—3j | -1 1
1] 7 177717

-1 |, 2 |,] 1

L -1 ] Lo ]

o [ TT7 1

4 |, 5 |,| —3

-1 | -3 ] [ -1

1 0770 1 11

| —1 1_’[1 0:]’{1 1]

1 =17 1 0
[2 1_’[0—1]’

1 2773 -3
[0 1’[2 1}

X Fx 42,52 20+ 1, 2% +5x 4+ 1

2B—1,x2 -1, 211
1 2 .
Show that [ } , [ 5 :l form a basis for R?.
1 5] )
Show that [ g } , [ ’ } form a basis for R,
1 0 2
Show that 3 |s —1 : 1 form a
—1 2 3

basis for R3.

14.

16.

17,

18.

19.

[\°]

. Show that

0.

) 1 1
Show that -1 1, 3 1, —4 form a
0 —1 -1

basis for R3.

1 —1 1 2
o 1]°L1 1]
0 1 1 27 .
4 @ 5 form a basis for M2 (R).
Showthat[
1 1
0 1
2 0
0 3

Show that x> +x + 1, x2 —x + 1,x2 — 1 form a
basis for P,.

1 0 1 0 1 -1

-1 0 1}’[—1 2 o}’
1 21 1 21

’[0 1 2}’[0 -1 2}’

] form a basis for M,.3(R).

N W N =

Show that x> +x, x> — x, x + 1, x> + 1 form a basis
for P3.
—1

Show that | 2 |, 0 | do not form a basis

for R3.

Show that x? — 3x, x +7 do not form a basis for P,.

. Show that x + 1, x + 2, x + 3 do not form a basis

for P;.
—1 1 0 1
. Show that 2 |, L s [ 1
1 0 1 -1

do not form a basis for R?.
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23.

24.

25.

26.

27.

28.

29.

30.
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If « is the basis in Exercise 13, find:

1
a) [v], forv = 2 |s
-1
i
b) vif [v], = 2
- _1 -
If B is the basis in Exercise 14, find:
P g T
a) [v]gifv= 1 |,
- O -
e
b) vif [v]g = 1
0
If B is the basis _in Exer—cise 17, find:
a) [v]g if v = 2x2 + 3x,
1
b) vif[vlg=| 2
3

If y is the basis of Exercise 18, find:
a) [v], ifv =x34+x2+x+1,

" -3

2

0

1

Show that any set of vectors that contains the zero
vector is a linearly dependent set of vectors.

Show thatif vy, va, ..., v, is a linearly independent
set of vectors, then any subset of these vectors is also
linearly independent.

b) vif [v], =

Suppose v; and v, are nonzero vectors in R? and L

is a line in R? parallel to v;. What are necessary and

sufficient conditions in terms of the line L for v; and
vy to be linearly independent?

Let v; and v, be vectors in R that are linearly inde-

pendent.

a) If all initial points of vectors are placed at the
same point in R3, what geometric object do the
linear combinations of v; and v, determine?

b) If v3 is a third vector in R?, what are necessary
and sufficient conditions for vy, v,, v3 to be

linearly independent in terms of this geometric
object?

Use the system of linear equation solving capabilities of
Maple or another appropriate software package in Exer-

cises 31 and 32.
31. a) Show that the vectors

T3 11 -5 8 ]
15 22 —14 81
11 12 13 14
-1 '] =9 [| 10 || 101
53 18 3 11

6] L7 L 1] [ 15 ]

_ T
3
15 16
2 7] 88
99 —49
L —68 | | 1]

form a basis for R®.

b) Find the coordinates of

relative to the basis in part (a).
32. a) Show that

W 43+t at Fxt x4+ 1,
S Lt S L B B
I gt — D 5P ],
S L b2t a1,
20 4855 4 2% — 3P 242 — 25 — 1,
28 — ¥ 2 g a? — 3 41

form a basis for Pg.
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b) Find the coordinates of 7x° + 6x° — 5x* — 4x3 34. Let vy, vs,...,v, be vectors in R”. Show that
—3x2 4+ 2x — 1 relative to the basis in part (a). V1, V2, ..., U, form a basis for R” if and only if the

We saw in the solution to Example 11 that the three matrix [vy va ... v,]is nonsingular.

vectors given in this example are linearly dependent 35. Use the result of Exercise 34 and a suitable test for

in R2. Show that this can be generalized to the fol- invertibility of a matrix in Maple or another appro-

lowing: If vy, vy, ..., v, are vectors in R” and if priate software package to show that the vectors in

m > n, then vy, vy, ..., vy, are linearly dependent. Exercise 31(a) form a basis for R°.

2.4 DIMENSION; NULLSPACE, Row SPACE, AND COLUMN SPACE

LEMMA 2.8

Proof

Looking back through the last section at all the examples of bases for R" we did for
various values of n or any exercises you did involving bases for these spaces, you might
notice every basis had n elements. This is no accident. In fact, our first main objective
in this section will be to show that once a vector space has a basis of n vectors, then
every other basis also has n vectors. To reach this objective, we first prove the following
lemma.

If vy, vy, ..., v, are abasis for a vector space V, then every set of vectors wy, wa, ..., Wy,
in V where m > n is linearly dependent.

We must show that there is a nontrivial linear combination
Clwy + Wy + -+ -+ CuWy = 0. (1)

To this end, let us first write each w; as a linear combination of our basis vectors
Vi, U2, .00y Uyt

wip =anvy +ax vy + -+ ay vy
Wy = apv; + anvs + - + apnvy,

2
Wy = ApVy + a2, V2 Jremm s AnmVUn .
Substituting the results of Equations (2) into Equation (1), we have
ci(aivy +as1vy + -+ -+ agvy) + ca(anvy +anvy + - -+ apnv,)
T+ sy, (almvl + Ao Vs e s anmvn) =
(allcl T ajpcy aniitts almcm)vl o (aZICI + anncy “fr s ef a2mcm)v2
o ewm (anlcl - ap2Co <1 = wa anmcm)vn = ().
Since vy, va, ..., v, are linearly independent, the last equation tells us that we have the

homogeneous system:
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Proof

ancl +apc+ -+ aumtn =0

aic1 +ancy + -+ aypcy =0

ani€1 + apcr + -+ + Ayl = 0.

Since m > n, we know by Theorem 1.1 that this system has nontrivial solutions. Thus
we have nontrivial linear combinations equal to the zero vector in Equation (1) and hence
Wi, Wa, ..., Wy, are linearly dependent. @

Now we are ready to prove the result referred to at the beginning of this section,
which we state as follows.

If v, v, ..., v, and wy, wa, . .., wy, both form bases for a vector space V, then n = m.
Applying Lemma 2.8 with vy, va, ..., v, as the basis, we must have m < n or else
wi, W, ..., w, would be linearly dependent. Interchanging the roles of vy, v, ..., v,
and wy, wy, ..., w,,, we obtain n < m. Hence n = m. @®

The number of vectors in a basis (which Theorem 2.9 tells us is always the same) is
what we call the dimension of the vector space.

DEFINITION Ifavectorspace V hasabasis of n vectors, we say the dimension
of V is n.

We denote the dimension of a vector space V by

dim(V).
Thus, for example, since the standard basis ey, e, .. ., e, for R" has n vectors,
dim(R") = n.

Since the standard basis for M,,x,(IR) consists of the mn matrices E;; with 1 in the
ij-position and Os elsewhere,

dim(M,,«, (R)) = mn.

Since the standard basis x”, ..., x, 1 for P, has n + 1 elements,

dim(P,) =n + 1.

Not every vector space V has a basis consisting of a finite number of vectors, but
we can still introduce dimensions for such vector spaces. One such case occurs when V
is the zero vector space consisting of only the zero vector. The zero vector space does
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not have a basis. In fact, the set consisting of the zero vector is the only spanning set for
the zero vector space. But it is not a basis since, as you were asked to show in Exercise
27 in the previous section, no set containing the zero vector is linearly independent. For
obvious reasons, if V' is the zero vector space, we take the dimension of V to be 0 and
write dim(V) = 0. The zero vector space along with vector spaces that have bases with
a finite number of vectors are called finite dimensional vector spaces. Vector spaces
V that are not finite dimensional are called infinite dimensional vector spaces and we
write dim (V) = oo. It can be proven that infinite dimensional vector spaces have bases
with infinitely many vectors, but we will not attempt to prove this here.” The set of
all polynomials P is an example of an infinite dimensional vector space. Indeed, the
polynomials 1, x, x2, x3, . .. form a basis for P. Many of the other function spaces we
looked at in Sections 2.1 and 2.2, such as F(a, b), C(a, b), D(a, b), and C*®(a, b), are
infinite dimensional, but we will not attempt to give bases for these vector spaces.

We next develop some facts that will be useful to us from time to time. We begin
with the following lemma.

Letvy, vp, ..., v, and wy, wo, ..., wy, be vectors in a vector space V. Then Span{vy, vy,
..., Uy} = Span{wi, wy, ..., w,} if and only if each v; is a linear combination of
wi, Wa, ..., w, and each w; is a linear combination of vy, v, ..., v,.

Suppose that Span{v;, v, ..., v,} = Span {w;, wy, ..., w,}. Since each v; is in
Span{vy, vy, ..., v,} (use 1 for the scalar on v; and O for the scalar on all other v; to write
v; as a linear combination of vy, va, ..., v,), v; is in Span{w;, w, ..., w,}. Hence v;
is a linear combination of wy, ws, ..., w,. Likewise each w; is a linear combination of
V15 V250505 Up

To prove the converse, first note that if each v; is a linear combination of w;, w,,
..., Wy, then each v; is in Span{w;, wy, ..., w,}. Since subspaces are closed under
addition and scalar multiplication, they are also closed under linear combinations. Hence
any linear combination of vy, vy, ..., v, lies in Span{w;, wy, ..., w,} giving us that
Span{vi, v, ..., v,} is contained in Span{wy, w,, ..., w,}. Likewise we will have
Span{wj, wy, ..., w,} is contained in Span{vy, vy, ..., v,} so that these two subspaces
are equal as desired. ®

The next lemma tells us that we can extend linearly independent sets of vectors to
bases and reduce spanning sets to bases by eliminating vectors if necessary.
Suppose that V is a vector space of positive dimension 7.

1. If vy, vy, ... v are linearly independent vectors in V, then there exist vectors

Vg1, - -+, Uy SO that vy, ..., U, Va1, - .., v, form a basis for V.
2. Ifvy, vy, ..., v span V, then there exists a subset of vy, vy, ..., v that forms
a basis of V.

7 Typical proofs involve using a result called Zorn’s Lemma, which you may well encounter if you continue
your study of mathematics.
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Proof

THEOREM 2.12

Proof

1. Notice that k < n by Lemma 2.8. If k < n, v;, vy, ..., v cannot span V,

otherwise dim(V) = k not n. Thus there is a vector vg.| not in
Span{vy, v, ..., vr}. We must have vy, v, ..., Vg, gy are linearly
independent. To see this, suppose

Clv1 + Uy + -+ -+ €Uk + Crg1Vpy1 =0

where ¢y, ¢3, ..., C, cryq are scalars. Were c,1 7% 0, we could solve this
equation for vy obtaining v+ is in Span{vy, vy, ..., vx}, which we know is
not the case. Now that ¢;; = 0 in this linear combination, the linear in-
dependence of vy, vy, ..., v tells us we also have ¢; = 0,¢; =0, ..., ¢, =0.
Hence we have the linear independence of vy, vy, ..., vgy1. Ifk+1 < n,
repeat this procedure again. After n — k steps we arrive at a set of n linearly
independent vectors vy, vy, ..., v,. These n vectors must span V; otherwise
we could repeat our procedure again obtaining n + 1 linearly independent
vectors vy, vy, ..., Uy, Uyt1, Which is impossible by Lemma 2.8. Thus we have
arrived at the desired basis.

If v, va, . . ., v; are linearly independent, they then form the desired basis. If

not, one of them must be a linear combination of the others. Relabeling if
necessary to make the notation simpler, we may assume vy is a linear com-

bination of vy, vy, ..., vx_;. Since each vy, vs, ..., vy is a linear combination
of vy, va, ..., vy—; and vice versa, it follows by Lemma 2.10 that
Vi, V2, ..., Ug—1 span V. If vy, vy, ..., vp—; are also linearly independent, we

have our desired basis; if not, repeat the procedure we just did again. Since
such steps cannot go on forever, we must obtain the desired type of basis after
a finite number of steps. ®

At the beginning of this section we noted that the examples and exercises of the
previous section suggested that once one basis has n elements, all other bases also have
n elements. We then went on to prove this (Theorem 2.9). Another thing you might notice
from the examples and exercises in the last section is that every time we had n vectors
in a vector space of dimension 7, having one of the properties of linear independence or
spanning seemed to force the other property to hold too. The next theorem tells us this
is indeed the case.

Suppose that V' is a vector space of dimension 7.

If the vectors vy, v, ..., v, are linearly independent, then vy, vy, .. ., v, form
a basis for V.

If the vectors vy, v, ..., v, span V, then vy, vy, .. ., v, form a basis for V.

By part (1) of Lemma 2.11, we can extend vy, v, ..., v, to a basis of V. But
since every basis of V has n elements, vy, vy, ..., v, must already form a basis
for V.
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2. By part (2) of Lemma 2.11, we know some subset of the set of vectors
v, Vg, ..., U, forms a basis of V. Again since every basis has n elements, this
subset forming the basis must be the entire set of vectors vy, va, ..., v,. @

Show that x2 — 1, x> + 1, x + 1 form a basis for P,.

Since dim(P,) = 3 and we are given three vectors in P, Theorem 2.12 tells us we can get
by with showing either linear independence or spanning. Let us do linear independence.
If

=D+ +1)+eax+1)=0,
we have the system:
ci+c¢=0
;=0

—c1+c+ce3=0.

It is easily seen that this system has only the trivial solution. Thus x> — 1, x>+ 1, x + 1
are linearly independent and hence form a basis for P;. [

Of course, notice that Theorem 2.12 allows us to get by with checking for linear
independence or spanning only when we already know the dimension of a finite dimen-
sional vector space V and are given the same number of vectors as dim(V). If we do
not know dim (V) for a finite dimensional vector space V, we must check both linear
independence and spanning. Notice too that if we do know the dimension of a vector
space V is n, no set of vectors with fewer or more than n elements could form a basis
since all bases must have exactly n elements. For example, neither the set of two vectors
(1,1, 1), (1, —1, 3) nor the set of four vectors (1, 1, 1), (1, —1,3), (0, 1, 1), (2,1, —1)
could form a basis for the three-dimensional space R?.

We conclude this section with a discussion of techniques for finding bases for three
important subspaces associated with a matrix. Recall that the solutions to the homoge-
neous system AX = 0 where A is an m x n matrix form a subspace of R” (Theorem
2.4). This vector space of solutions is called the nullspace or kernel of the matrix A
and we shall denote it by

NS(A).

The manner in which we wrote our solutions to homogeneous systems in Chapter 1 leads
us naturally to a basis for NS(A). Consider the following example.

Find a basis for NS(A) if
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Solution  Reducing the augmented matrix for the system AX = 0 to reduced row-echelon form,

1 2 -1 3 0,0 1 2 —1 3 0.0
11 04 1 :0|>|0=1 1 1 110
1 4 31 2.0 0 2 2 -2 -2 .19
1 0 1 5 2 .0
s | 8 1 <1 =1 =1 '@ |,
00 0 0 0.0
we see our solutions are
x| —X3 — Sx4 — 2x5
X2 X3 + x4 + x5
Az | = X3
X4
| ”
If we express this column vector as
—1 7 M =57 M =27
1 1 1
X3 1 |+ x4 0 | +xs 0 1,
0 1 0
0 | L 0 L 1

we immediately have that every solution is a linear combination of

r = 57 -2
1 1 1
1, of.| o
0 1 0

L O o4 L 1.

so that these three columns span N S(A). They also are easily seen to be linearly inde-
pendent. (The only such linear combination of them that is the zero column is the one
with x3 = 0, x4 = 0, x5 = 0.) Hence these three columns form a basis for NS(A). @

The subspace of My, (R) spanned by the rows of an m x n matrix A is called the
row space of A and is denoted

RS(A).

For instance, if A is the matrix in Example 2, the row space of A is

Span{[1 2 -1 3 0],[1 1 0 4 1],[1 4 =3 1 =21]}.
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Notice that if we perform an elementary row operation on a matrix A, the resulting
matrix has its rows being linear combinations of the rows of A and vice versa since
elementary row operations are reversible. Consequently, A and the resulting matrix
have the same row space by Lemma 2.10. More generally this holds if we repeatedly do
elementary row operations and hence we have the following theorem.

If A and B are row equivalent matrices, then

RS(A) = RS(B).

Because of Theorem 2.13, if B is the reduced row-echelon form of a matrix A, then
B has the same row space as A. It is easy to obtain a basis for RS(B) (which equals
RS(A)) as the following example illustrates.

Find a basis for the row space of the matrix

of Example 2.

From the solution to Example 2, we see the reduced row-echelon form of A is

1 0 1 5 2

B=]01 -1 -1 -1

0 0 0 0 0
The nonzero rows of B span RS(B) = RS(A). They also are linearly independent. (If

a[1 01 5 2]4+c[0 1 -1 -1 —-1]=[0 0 0 0 0],
we see from the first two entries that ¢; = 0 and ¢, = 0.) Hence
[t 015 2],[01 -1 -1 —1]

form a basis for RS(A). @®
There is a relationship between the dimensions of RS(A) and N §(A) and the num-
ber of columns n of an m x n matrix A. Notice that dim(RS(A)) is the number of
nonzero rows of the reduced row-echelon form of A, which is the same as the number of
nonfree variables in the solutions of the homogeneous system AX = 0. Also notice that
dim(N S(A)) is the number of free variables in the solutions of the homogeneous system
AX = 0. Since the number of nonfree variables plus the number of free variables is

the total number of variables in the system AX = 0, which is n, we have the following
theorem.
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EXAMPLE 4

Solution
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If A is an m x n matrix,
dim(RS(A)) + dim(NS(A)) = n.
The final subspace associated with an m x n matrix A we shall introduce is the

subspace of R™ spannned by the columns of A, which is called the column space of A
and is denoted

CS(A).

For the matrix A in Examples 2 and 3, the column space is

1 2 —1 3 0
Span 1], 11, 01, 4 |, 1
1 4 -3 1 —2

In the same manner as we use row operations to find bases for the row space of a matrix
A, we could find a basis for the column space of A by using column operations to get
the column reduced echelon form of A. The nonzero columns of the column reduced
echelon form will form a basis for CS(A). But if you feel more comfortable using row
operations as we authors do, notice that a basis for CS(A) can be found by reducing AT
to row-echelon form and then transposing the basis vectors of RS(AT) back to column
vectors. This is the approach we take in the next example.

Find a basis for the column space of the matrix

1 2 — 0
A= 1 1 0 4 1
1 4 —3 —2

of Examples 2 and 3.

Reducing AT to reduced row-echelon form,

r1 1 1 7] ! 1 1 r1 0 37
2 1 4 0 -1 2 01 =2
AT=| -1 0 -3 |>]0 1 2 |—=| 00
4 1 0 1 =2 0 0
L 0 -2 ] L 0 1 -2 L 0 0 |
from which we see
0
[t 03] =[]0, [o1 —2]=| 1
-2

form a basis for CS(A). ®
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You might note that we actually do not have to go all the way to reduced row-echelon
form to see a basis. For instance, it is easy to see that the first two rows in the second
matrix of the solution to Example 4 would have to give us a basis so that we could equally
well use

1 0
11, —1
1 2

as a basis for CS(A) in Example 4.

The dimensions of RS(A) and CS(A) are the same for the matrix A in Examples 3
and 4. (Both dimensions are 2.) In Corollary 5.5 of Chapter 5 we shall prove that this is
always the case; that is, for any matrix A,

dim(RS(A)) = dim(CS(A)).

This common dimension is called the rank of the matrix A and is denoted rank(A). For
instance, if A is the matrix in Examples 3 and 4, then rank(A) = 2. Observe that the
rank of a matrix is the same as the number of nonzero rows (columns) in its reduced row
(column)-echelon form.

Sometimes we have to find a basis for a subspace of R” spanned by several vectors
of R”. This is the same as finding a basis for the column space of a matrix as the final
example of this section illustrates.

Find a basis for the subspace of R* spanned by
1 1
-1 |, 1|,
0 1 1

The subspace spanned by these three vectors is the same as the column space of the
matrix

1 1 2
A= -1 1 0
0 1 1
Reducing AT,
1 =1 0 1 - 0
AT=|1 1 -
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It is apparent that

1 0
~1 |,
0 1

form a basis for CS(A) and hence for the subspace spanned by the three given vectors. @

EXERCISES 2.4

1. Ineach of parts (a)—(d), determine whether the given 4. In each of parts (a)-(d), determine whether the given
vectors form a basis for R?. matrices form a basis for M., (R).

2|2 ] 2o 1 [Lo 1o o]
o[-

c)[‘:é],[_é} B
o[ S]] 0

2. Ineach of parts (a)—(d), determine whether the given
vectors form a basis for R3. d)

S O O =
P

o

L =

| E—
1
O = f—
o O

| IS

| —

= O
O

| I |

Lo 1 o 1]

=l

O = = O

=== |

| — 1
O - —

— O

f— ]

( LT[ 277 o g
a) 1 {, =1 |,] -1 [

L 41 L o0 [ 8

3 [ -1 3 Do the following for the matrices in Exercises 5—12:
L 2 le] =1 |af 1 a) Find a basis for the nullspace of the matrix.

- ! J - 0 J - 2 J b) Find a basis for the row space of the matrix.
o i ’ F _z , I j 7 _2 ¢) Find a basis for the column space of the matrix.

1 5 5 1 d) Determine the rank of the matrix.

F _7‘ = ; = & 2 (Parts (a)—(c) do not have unique answers.)

a | -9 |.]| 2 5.[1 1} 6.[_2 4}
| ) J 1 -2 1 -2
3. Ineach of parts (a)-(d), determine whether the given [ 1 =1 1 2 —1 0

polynomials form a basis for Ps. 7. | —1 1 0 8. | 1 1 -1
a) x24+x—1,2x2—3,x*+x+2 | 1 -1 2 1 0 1
b)5—4x2,3—2x FT1 1 0 3
¢ >+ x—1Lx*4x+2,x 4%+ 14 ol 1 1 1 -2 10.[2 -1 3 4}
d) x> +x,x+1,x2+1,1 8 3 2 —i AR
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r1 -1 2 1

2 1 -1 0

11. | 1 2 =3 =1
0 3 =5 —2

4 -1 3 2

12. | =2 1 1 -1 0

-

In Exercises 13-15, find a basis for the subspace spanned
by the given vectors. (These do not have unique an-
Swers.)

[ 1] To 5
1B =2 |, 1],| -6
| 1] |3 =i
o1 [ 1] [ 2 4
14, | =2 || =1 |, 0o |,] —2
1L o] |-t —1
r—2717T7 17T -1
1 =) —4
15. , ,
3 1 9
| -4 | L -1] L -1

16. Without formally showing that there is a nontrivial
linear combination of x*—2x, x*+x3—1, x3+x+3,
x —x2 — x*, 10x — 91, wx* + /3% — 7x2 equal
to the zero polynomial, we can conclude these poly-
nomials are linearly dependent. Why is this?

17. Show that det(A) # 0 for an n x n matrix A if and
only if rank(A) = n.

18. Suppose that A is an m x n matrix. Show that if
m > n, then the rows of A are linearly dependent.

19. Suppose that A is an m x n matrix. Show that if
m < n, then the columns of A are linearly depen-
dent.

20. Consider the linearly independent polynomials
p1(x) = x* 4+ x, pp(x) = x + 1. Find a poly-
nomial p3(x) so that p;(x), pa(x), p3(x) form a
basis for P, in the manner of the proof of part (1) of
Lemma 2.11.

21. a) Show that the polynomials p;(x) = x> — 1,
p(x)=x*+1,psx)=x—1, pa(x) = x + 1
span P;.

22.

23.

24.

25.

b) Find a subset of p;(x), p2(x), p3(x), ps(x) that
forms a basis for P, in the manner of the proof
of part (2) of Lemma 2.11.

If the initial points of vectors in R are placed at

the origin, what geometric object is a subspace of

R3 of dimension one? What geometric object is a

subspace of R? of dimension two?

Explain why the reduced row-echelon form of a ma-

trix is unique. Is the reduced column-echelon form

unique? Why or why not?

Use the system of linear equation solving capabili-

ties of Maple or another appropriate software pack-

age to show that the matrices

1 0 1 -3
-3 =33 [, 1 13 |,
| ) 16 —2
1 17 -1 91 ]
-3 46 |, 6 —98 |,
32 -9 —1 1]
-2 1 3 2]
21 0 |, 5 =5
0 0 -4 0 |

form a basis for M3,,(R).
Let A be the matrix
-2 3 -1 4 =2
3 -1 2 6 8
1 7 =5
0 12 -5 15

A=

[ColE N

a) In Maple, the command nullspace (or
equivalently, kernel) can be used to find a basis
for the nullspace of a matrix. (The basis vectors
will be given as row vectors instead of column
vectors.) Use this command or a corresponding
command in an appropriate software package to
find a basis for the nullspace of the matrix A.

b) Bases for the row space of a matrix can be found
with Maple by using the gausselim or gaussjord
(or equivalently, rref) commands. Such bases
may also be found using the rowspace and
rowspan commands. Find bases for row space
of the matrix A using each of these four Maple
commands or corresponding commands in
another appropriate software package. If you



106

Chapter 2  Vector Spaces

are using Maple, compare your results obtained
with these four different commands.

¢) Bases for the column space of a matrix can be
found with Maple by using the gausselim or
gaussjord commands on the transpose of the
matrix. Such bases may also be found by using
the colspace and colspan commands. Find
bases for the column space of the matrix A
using each of these four methods in Maple or
corresponding commands in another

27.

28.

Compare the result you obtain here with your results
in Exercise 25(b).

Suppose that vy, va, ..., Vg are linearly independent
vectors in R". Let vy, be another vector in R”.
How could the gausselim or gaussjord commands
of Maple or corresponding commands in another ap-
propriate software package be used to determine if
Vg1 18 in Span{vy, vy, . .., V¢ }?

Use the result of Exercise 27 to extend the set con-
sisting of the vectors

appropriate software package. If you are using

Maple, compare your results obtained with 1 2
these four different approaches. 1
26. The basis command of Maple may be used to find a 3l -1 I

basis for the subspace spanned by a finite number of
row vectors in My, (R). Use this command or the
corresponding command in an appropriate software
package to find a basis for the subspace of M;s(R)
spanned by the vectors

[-2 3 -1 4 —2],[3 -1 2 6 8],

to a basis of R* in the manner of the proof of part
(1) of Lemma 2.11.

[1 7 =5 1 4],J]0 12 =5 15 8].

2.5 WRONSKIANS

In our work with linear differential equations in Chapter 4 we will have instances where
we will have to determine whether a set of functions forms a linearly independent set.
For instance, problems such as the following will arise: Are the functions given by
e*, cos x, sin x linearly independent? Consider a linear combination of these functions
that equals the zero function:

cie* +crcosx +c3sinx = 0.

The only such linear combination is the trivial one. One way to see this is to choose
three values of x such as x = 0, /2, 7. Substituting these values of x into our linear
combination, we have the system:

ci+c=0

¢ +c3=0

e"ci —cy =0.
Adding the first and third equations, we obtain (1 + ¢")c; = 0 from which we get
¢y = 0. It then follows that ¢, = 0 and ¢3 = 0. Hence e*, cos x, and sin x are linearly

independent. But there is another way to arrive at a system of equations involving
derivatives that is often more convenient to use for showing linear independence.
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Suppose that we have n functions fi, fa, ..., fn each of which have (n — 1)st
derivatives on an open interval (a, b); thatis, assume fi, f2, ..., f, allliein D" (a, b).8
Consider a linear combination of these functions that is equal to the zero function:

cifix) +eafo(x) 4+ +enfulx) =0.
Considering this equation along with the first n — 1 derivatives of each side of it, we
arrive at the following system:
cifix) teafalx)+- - +enfulx) =0
cfix) +efyx)+- +ef,(x) =0
eLfi &) F e fy &)+ e fl(x) =10 1)
. =) L (1=1) () —
aff W Haf, @+ +af,"" @) =0.

If there is some x in (a, b) for which this system has only the trivial solution, then
fi, fo, ..., f, will be linearly independent. Having such an x is the same as having an
x in (a, b) for which the the matrix

fix) L) o fulx)
fi(x) HLx) - filx)

1 (x) 2 e i

A% 0 - 120
is nonsingular. A convenient way of seeing if there is an x in (a, b) where this ma-
trix is nonsingular is by looking at its determinant, which is called the Wronskian®
of the functions fi, f>,..., fu. We will denote the Wronskian of fi, f5,..., f, by
w(fi(x), f2(x), ..., fu(x)):

fikx) & 0 fil®)
i) Hx) - filx)

w(fi(x), f2(x), ..., fulx)) = 7'(x) 7)o S

0@ 0 - £

Since a square matrix is nonsingular if and only if its determinant is nonzero (Theorem
1.21), we have the following theorem.

8 In fact, what we are about to do does not require the interval to be open; it will work on other types of
intervals (such as closed ones) as well.

9 The Wronskian is named in honor of the Polish-French mathematician Jésef Maria Hoéné-Wronski (1776—
1853).
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EXAMPLE 1

Solution

EXAMPLE 2

Solution

Vector Spaces

Suppose that fi, f>, ..., f, are functions in D"~ !(a, b). If the Wronskian w(f1(x),

S(x), oo os fu(x)) of fi, fa, ..., fuis nonzero for some x in (a, b), then fi, fo,..., fu
are linearly independent elements of D"~ (a, b).

Let us use the Wronskian to show e*, cosx, sinx are linearly independent (with
(—o00, 00) for the interval).

Determine if e*, cos x, sin x are linearly independent.

We have
er cos x sin x
w(e*,cosx,sinx) =| ¢* —sinx cos X
e’ —cosx —sinx

= ¢*(sin® x 4+ cos® x) — cos x(—e* sinx — e* cos x)
+ sinx(—e* cosx + e* sin x)
= 2e*,

Since 2e* is not zero for some x (in fact, it is not zero for every x), we have that
e*, cosx, sinx are linearly independent by Theorem 2.15. @

Be careful not to read too much into Theorem 2.15. It only tells us that if the
Wronskian is nonzero for some x, then the functions are linearly independent. It does
not tell us that the converse is true; that is, it does not tell us that linearly independent
functions have their Wronskian being nonzero for some x (or equivalently, that if the
Wronskian is zero for all x, then the functions are linearly dependent). In fact, the
converse of Theorem 2.15 does not hold in general. Here is an example illustrating this.

Show that the Wronskian of the functions f and g where f(x) = x? and g(x) = x|x| is
zero for every x and that f and g are linearly independent on (—o0, 00).

To calculate the Wronskian of f and g, we need their derivatives. This is easy for f. To
get the derivative of g notice that we can also express g(x) as

) x2 ifx>0
) =
4 —x? ifx<0

The graph of g appears in Figure 2.3.
We have

2x ifx>0

/x:
&) {—Zx ifx <0

Atx =0,

0+h) —g(0 Al
M:hmﬂzlimW:O-
h h—0

g0 = 1111—% h h—0
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0%
\
4+
2 —
| | | | > X
-2 -1 0 1 2
., .
4
Figure 2.3
Thus we can say
') 2x ifx >0
ol —
= 2% ifx<0
If x >0,
I,
w(f(x), g(x)) = =0.
(f(x), g . 9% By
Ifx <0,
2 2
w(fx), gx)) = =
fo g =]
Hence we have that the Wronskian of f and g is zero for every x.
To see that f and g are linearly independent, suppose that
c1f(x) +cgx) =0
where ¢; and c; are scalars. Substituting x = 1 and x = —1 into this equation, we arrive

at the system

ci+¢c =0

c1—6 =0,

which has only the trivial solution. Hence f and g are linearly independent as desired. @
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Itis possible to obtain a converse of Theorem 2.15 provided we put some additional
restrictions on the types of functions being considered. In Chapter 4 we will see a case

in which this occurs.

EXERCISES 2.5

In each of Exercises 1-9, show that the given functions
are linearly independent on (—oo, 00).

1.

. COS5x, sinSx
1 er 2%

|
)

ot
[

o
w

Y ® N2, e W

. Show that sin? x, cos

e3)r7 e~21

cosx, e~* sinx

—x

e ", xe

2—1,x2+1,x+1

e,\’ 62'\', 63.\'

e4x . xe4“, X2€4x

. er,efcosx, e sinx

b

. Show that 1 /x, x are linearly independent on (0, co).
. Show that x 4+ 1, x — 1, x are linearly dependent on

(—00, 00).

2 x, cos 2x are linearly depen-

dent on (—o0, 00).

. Show that the two functions in Example 2 are lin-

early dependent on [0, c0).

14.

15.

16.

Supposethata < ¢ < d < bandthat fi, f>, ..., f,
are functions in F(a, b).

a) If fi, f2, ..., fu are linearly independent on
(a,b),are f1, fa, ..., f, necessarily linearly
independent on (¢, d)? Why or why not?

b) If fi, f2, ..., f, are linearly independent on
(c,d), are fi, fa, ..., fy necessarily linearly
independent on (a, b)? Why or why not?

a) Find the Wronskian of 1, x, x2, ..., x" L.
b) Show that

w(g(x) f1(x), g(x) f2(x), ..., g(x) fu(x))
= [g)]"w(fi(x), fo(x),..., fulx)).

¢) Show that ¢, xe'™, x2e¢'™, ..., x" "1™ are

linearly independent on (—o0, 00).

Use the wronskian and det commands in Maple or
appropriate commands in another software package
to find the Wronskian of the functions e>*, xe™*,
¥ cos2x, €3 sin2x, xcosx, xsinx. Are these
functions linearly independent?



